ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering from conformal interfaces in two dimensions is universal in that the flux of reflected and transmitted energy does not depend on the details of the initial state. In this letter, we present the first gravitational calculation of energy ref lection and transmission coefficients for interfaces with thin-brane holographic duals. Our result for the reflection coefficient depends monotonically on the tension of the dual string anchored at the interface, and obeys the lower bound recently derived from the ANEC in conformal field theory. The B(oundary)CFT limit is recovered for infinite ratio of the central charges.
We consider the circuit complexity of free bosons, or equivalently free fermions, in 1+1 dimensions. Motivated by the results of [1] and [2, 3] who found different behavior in the complexity of free bosons and fermions, in any dimension, we consider the 1+1 dimensional case where, thanks to the bosonisation equivalence, we can consider the same state from both the bosonic and the fermionic perspectives. In this way the discrepancy can be attributed to a different choice of the set of gates allowed in the circuit. We study the effect in two classes of states: i) bosonic-coherent / fermionic-gaussian states; ii) states that are both bosonic- and fermionic-gaussian. We consider the complexity relative to the ground state. In the first class, the different results can be reconciled admitting a mode-dependent cost function in one of the descriptions. The differences in the second class are more important, in terms of the cutoff-dependence and the overall behavior of the complexity.
We relate the Riemann curvature of a holographic spacetime to an entanglement property of the dual CFT state: the Berry curvature of its modular Hamiltonians. The modular Berry connection encodes the relative bases of nearby CFT subregions while its bulk dual, restricted to the code subspace, relates the edge-mode frames of the corresponding entanglement wedges. At leading order in 1/N and for sufficiently smooth HRRT surfaces, the modular Berry connection simply sews together the orthonormal coordinate systems covering neighborhoods of HRRT surfaces. This geometric perspective on entanglement is a promising new tool for connecting the dynamics of entanglement and gravitation.
We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS$_2$ brane embedded in AdS$_3$. We find that, using the complexity=volume proposal, t he presence of the defect generates a logarithmic divergence in the complexity of the full boundary state with a coefficient which is related to the central charge and to the boundary entropy. For the complexity=action proposal we find that the complexity is not influenced by the presence of the defect. This is the first case in which the results of the two holographic proposals differ so dramatically. We consider also the complexity of the reduced density matrix for subregions enclosing the defect. We explore two bosonic field theory models which include two defects on opposite sides of a periodic domain. We point out that for a compact boson, current free field theory definitions of the complexity would have to be generalized to account for the effect of zero-modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا