ترغب بنشر مسار تعليمي؟ اضغط هنا

181 - Dong Li , Yannick Sire 2021
This note is devoted to several results about frequency localized functions and associated Bernstein inequalities for higher order operators. In particular, we construct some counterexamples for the frequency-localized Bernstein inequalities for high er order Laplacians. We show also that the heat semi-group associated to powers larger than one of the laplacian does not satisfy the strict maximum principle in general. Finally, in a suitable range we provide several positive results.
102 - Jialei Li , Xiaodong Liu 2021
The inverse electromagnetic source scattering problem from multi-frequency sparse electric far field patterns is considered. The underlying source is a combination of electric dipoles and magnetic dipoles. We show that the locations and the polarizat ion strengths of the dipoles can be uniquely determined by the multi-frequency electric far field patterns at sparse observation directions. The unique arguments rely on some geometrical discussions and ingenious integrals of the electric far field patterns with properly chosen functions. Motivated by the uniqueness proof, we introduce two indicator functions for locating the magnetic dipoles and the electric dipoles, respectively. Having located all the dipoles, the formulas for computing the corresponding polarization strengths are proposed. Finally, some numerical examples are presented to show the validity and robustness of the proposed algorithm.
78 - Zhendong Li , Wen Chen 2021
In this paper, we investigate a more efficient transmissive reconfigurable meta-surface (RMS) transmitter, which is potential to realize the sixth-generation (6G) mobile communication ultra massive multiple input multiple output (MIMO) due to its low cost and low power consumption. Since RMS is passive, it can reduce power consumption while satisfying the high-capacity requirements of 6G networks. For the proposed architecture, we elaborate transmissive RMS transmitter architecture, channel model, channel estimation, downlink (DL) signal modulation, and beamforming design, etc.. Finally, several potential research directions in the future are given.
As online shopping prevails and e-commerce platforms emerge, there is a tremendous number of parcels being transported every day. Thus, it is crucial for the logistics industry on how to assign a candidate logistics route for each shipping parcel pro perly as it leaves a significant impact on the total logistics cost optimization and business constraints satisfaction such as transit hub capacity and delivery proportion of delivery providers. This online route-assignment problem can be viewed as a constrained online decision-making problem. Notably, the large amount (beyond ${10^5}$) of daily parcels, the variability and non-Markovian characteristics of parcel information impose difficulties on attaining (near-) optimal solution without violating constraints excessively. In this paper, we develop a model-free DRL approach named PPO-RA, in which Proximal Policy Optimization (PPO) is improved with dedicated techniques to address the challenges for route assignment (RA). The actor and critic networks use attention mechanism and parameter sharing to accommodate each incoming parcel with varying numbers and identities of candidate routes, without modeling non-Markovian parcel arriving dynamics since we make assumption of i.i.d. parcel arrival. We use recorded delivery parcel data to evaluate the performance of PPO-RA by comparing it with widely-used baselines via simulation. The results show the capability of the proposed approach to achieve considerable cost savings while satisfying most constraints.
150 - Xiaodong Liu , Shixu Meng 2021
We consider the inverse source problems with multi-frequency sparse near field measurements. In contrast to the existing near field operator based on the integral over the space variable, a multi-frequency near field operator is introduced based on t he integral over the frequency variable. A factorization of this multi-frequency near field operator is further given and analysed. Motivated by such a factorization, we introduce a multi-frequency sampling method to reconstruct the source support. Its theoretical foundation is then derived from the properties of the factorized operators and a properly chosen point spread function. Numerical examples are provided to illustrate the multi-frequency sampling method with sparse near field measurements. Finally we briefly discuss how to extend the near field case to the far field case.
Federated Learning (FL) makes a large amount of edge computing devices (e.g., mobile phones) jointly learn a global model without data sharing. In FL, data are generated in a decentralized manner with high heterogeneity. This paper studies how to per form statistical estimation and inference in the federated setting. We analyze the so-called Local SGD, a multi-round estimation procedure that uses intermittent communication to improve communication efficiency. We first establish a {it functional central limit theorem} that shows the averaged iterates of Local SGD weakly converge to a rescaled Brownian motion. We next provide two iterative inference methods: the {it plug-in} and the {it random scaling}. Random scaling constructs an asymptotically pivotal statistic for inference by using the information along the whole Local SGD path. Both the methods are communication efficient and applicable to online data. Our theoretical and empirical results show that Local SGD simultaneously achieves both statistical efficiency and communication efficiency.
The spatial covariance matrix has been considered to be significant for beamformers. Standing upon the intersection of traditional beamformers and deep neural networks, we propose a causal neural beamformer paradigm called Embedding and Beamforming, and two core modules are designed accordingly, namely EM and BM. For EM, instead of estimating spatial covariance matrix explicitly, the 3-D embedding tensor is learned with the network, where both spectral and spatial discriminative information can be represented. For BM, a network is directly leveraged to derive the beamforming weights so as to implement filter-and-sum operation. To further improve the speech quality, a post-processing module is introduced to further suppress the residual noise. Based on the DNS-Challenge dataset, we conduct the experiments for multichannel speech enhancement and the results show that the proposed system outperforms previous advanced baselines by a large margin in multiple evaluation metrics.
123 - He Liu , Tao Wang , Yidong Li 2021
In recent years, powered by the learned discriminative representation via graph neural network (GNN) models, deep graph matching methods have made great progresses in the task of matching semantic features. However, these methods usually rely on heur istically generated graph patterns, which may introduce unreliable relationships to hurt the matching performance. In this paper, we propose a joint emph{graph learning and matching} network, named GLAM, to explore reliable graph structures for boosting graph matching. GLAM adopts a pure attention-based framework for both graph learning and graph matching. Specifically, it employs two types of attention mechanisms, self-attention and cross-attention for the task. The self-attention discovers the relationships between features and to further update feature representations over the learnt structures; and the cross-attention computes cross-graph correlations between the two feature sets to be matched for feature reconstruction. Moreover, the final matching solution is directly derived from the output of the cross-attention layer, without employing a specific matching decision module. The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k), and it outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks. Furthermore, the graph patterns learnt by our model are validated to be able to remarkably enhance previous deep graph matching methods by replacing their handcrafted graph structures with the learnt ones.
320 - Xidong Feng , Chen Chen , Dong Li 2021
Practical recommender systems experience a cold-start problem when observed user-item interactions in the history are insufficient. Meta learning, especially gradient based one, can be adopted to tackle this problem by learning initial parameters of the model and thus allowing fast adaptation to a specific task from limited data examples. Though with significant performance improvement, it commonly suffers from two critical issues: the non-compatibility with mainstream industrial deployment and the heavy computational burdens, both due to the inner-loop gradient operation. These two issues make them hard to be applied in practical recommender systems. To enjoy the benefits of meta learning framework and mitigate these problems, we propose a recommendation framework called Contextual Modulation Meta Learning (CMML). CMML is composed of fully feed-forward operations so it is computationally efficient and completely compatible with the mainstream industrial deployment. CMML consists of three components, including a context encoder that can generate context embedding to represent a specific task, a hybrid context generator that aggregates specific user-item features with task-level context, and a contextual modulation network, which can modulate the recommendation model to adapt effectively. We validate our approach on both scenario-specific and user-specific cold-start setting on various real-world datasets, showing CMML can achieve comparable or even better performance with gradient based methods yet with much higher computational efficiency and better interpretability.
In this work, kinks with non-canonical kinetic energy terms are studied in a type of two-dimensional dilaton gravity model. The linear stability issue is generally discussed for arbitrary static solutions with the aid of supersymmetric quantum mechan ics theory, and the stability criteria are obtained. As an explicit example, a model with cuscuton term is studied. After rewriting the equations of motion into simpler first-order formalism and choosing a polynomial superpotential, an exact self-gravitating kink solution is obtained. The impacts of the cuscuton term are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا