ترغب بنشر مسار تعليمي؟ اضغط هنا

261 - Maria Messineo 2014
Young massive stars and stellar clusters continuously form in the Galactic disk, generating new HII regions within their natal giant molecular clouds and subsequently enriching the interstellar medium via their winds and supernovae. Massive stars are among the brightest infrared stars in such regions; their identification permits the characterization of the star formation history of the associated cloud as well as constraining the location of stellar aggregates and hence their occurrence as a function of global environment. We present a stellar spectroscopic survey in the direction of the giant molecular cloud G23.3-0.3. This complex is located at a distance of ~ 4-5 kpc, and consists of several HII regions and supernova remnants. We discovered 11 OfK+ stars, one candidate Luminous Blue Variable, several OB stars, and candidate red supergiants. Stars with K-band extinction from ~1.3 - 1.9 mag appear to be associated with the GMC G23.3-0.3; O and B-types satisfying this criterion have spectro-photometric distances consistent with that of the giant molecular cloud. Combining near-IR spectroscopic and photometric data allowed us to characterize the multiple sites of star formation within it. The O-type stars have masses from 25 - 45 Msun, and ages of 5-8 Myr. Two new red supergiants were detected with interstellar extinction typical of the cloud; along with the two RSGs within the cluster GLIMPSE9, they trace an older burst with an age of 20--30 Myr. Massive stars were also detected in the core of three supernova remnants - W41, G22.7-0.2, and G22.7583-0.4917. A large population of massive stars appears associated with the GMC G23.3-0.3, with the properties inferred for them indicative of an extended history of stars formation.
Young massive (M >10^4 Msun) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here we report about a new young massive stellar cluster in the Milky Way. Near-infrar ed medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main sequence stars with masses between 25 and 100 Msun. A population with age of 4-4.5 Myr and a mass of ~10000 Msun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.
We present HST/NICMOS photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H-Ks =1 mag, indicating an interstellar extinction Aks=1.6pm0.2 mag. The spe ctra of the three brightest stars show deep CO band-heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2pm0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600pm400 Msun, integrated down to 1 Msun. In the vicinity of GLIMPSE9 are several HII regions and SNRs, all of which (including GLIMPSE 9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.
We present the serendipitous discovery of a young stellar cluster in the Galactic disk at l=12deg. Using Keck/NIRSPEC, we obtained high- and low-resolution spectroscopy of several stars in the cluster, and we identified one red supergiant and two blu e supergiants. The radial velocity of the red supergiant provides a kinematic cluster distance of 4.7pm0.4 kpc, implying luminosities of the stars consistent with their spectral types. Together with the known Wolf-Rayet star located 2.4 from the cluster center, the presence of the red supergiant and the blue supergiants suggests a cluster age of 6-8 Myr, and an initial mass of 2000 Msun. Several stars in the cluster are coincident with X-ray sources, including the blue supergiants and the Wolf-Rayet star. This is indicative of a high binary fraction, and is reminiscent of the massive young cluster Westerlund 1. The cluster is coincident with two supernova remnants, SNR G12.72-0.0 and G12.82-0.02, and the highly magnetized pulsar associated with the TeV gamma-ray source HESS J1813-178. The mixture of spectral types suggests that the progenitors of these objects had initial masses of 20 - 30 Msun.
We present results from K band slit scan observations of a ~20x20 region of the Galactic center (GC) in two separate epochs more than five years apart. The high resolution (R>=14,000) observations allow the most accurate radial velocity and accelerat ion measurements of the stars in the central parsec of the Galaxy. Detected stars can be divided into three groups based on the CO absorption band heads at ~2.2935 microns and the He I lines at ~2.0581 microns and ~2.112, 2.113 microns: cool, narrow-line hot and broad-line hot. The radial velocities of the cool, late-type stars have approximately a symmetrical distribution with its center at ~-7.8(+/-10.3) km/s and a standard deviation ~113.7(+/-10.3) km/s. Although our statistics are dominated by the brightest stars, we estimate a central black hole mass of 3.9(+/-1.1) million solar masses, consistent with current estimates from complete orbits of individual stars. Our surface density profile and the velocity dispersion of the late type stars support the existence of a low density region at the Galactic center suggested by earlier observations. Many hot, early-type stars show radial velocity changes higher than maximum values allowed by pure circular orbital motions around a central massive object, suggesting that the motions of these stars greatly deviate from circular orbital motions around the Galactic center. The correlation between the radial velocities of the early type He I stars and their declination offsets from Sagittarius A* suggests that a systematic rotation is present for the early-type population. No figure rotation around the Galactic center for the late type stars is supported by the new observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا