ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecu lar hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2 and sulphur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a similar manner to that found when mixing is included.
The source of viscosity in astrophysical accretion flows is still a hotly debated issue. We investigate the contribution of convective turbulence to the total viscosity in a self-consistent approach, where the strength of convection is determined fro m the vertical disc structure itself. Additional sources of viscosity are parametrized by a beta-viscosity prescription, which also allows an investigation of self-gravitating effects. In the context of accretion discs around stellar mass and intermediate mass black holes, we conclude that convection alone cannot account for the total viscosity in the disc, but significantly adds to it. For accretion rates up to 10% of the Eddington rate, we find that differential rotation provides a sufficiently large underlying viscosity. For higher accretion rates, further support is needed in the inner disc region, which can be provided by an MRI-induced viscosity. We briefly discuss the interplay of MRI, convection and differential rotation. We conduct a detailed parameter study of the effects of central masses and accretion rates on the disc models and find that the threshold value of the supporting viscosity is determined mostly by the Eddington ratio with only little influence from the central black hole mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا