ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the $H$-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evalua ted astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three differe
We present a measurement of the correlation function between luminous red galaxies and cool gas traced by Mg II lambda lambda 2796, 2803 absorption, on scales ranging from about 30 kpc to 20 Mpc. The measurement is based on cross-correlating the posi tions of about one million red galaxies at z~0.5 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. We find that: (i) This galaxy-gas correlation reveals a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark matter halo dominated environment to a regime where clustering is dominated by halo-halo correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of the gas distribution over three orders of magnitude in scale. Within this framework we estimate the average host halo mass of luminous red galaxies to be about 10^{13.5} M_solar, in agreement with other methods. We also find the Mg II gas-to-mass ratio around LRGs to be consistent with the cosmic value estimated on Mpc scales. Combining our galaxy-gas correlation and the galaxy-mass correlation function from galaxy-galaxy lensing analyses we can directly measure the Mg II gas-to-mass ratio as a function of scale and reach the same conclusion. (ii) From line-width estimates, we show that the velocity dispersion of the gas clouds also shows the expected 1- and 2-halo behaviors. On large scales the gas distribution follows the Hubble flow, whereas on small scales we observe the velocity dispersion of the Mg II gas clouds to be lower than that of collisionless dark matter particles within their host halo. This is in line with the fact that cool clouds are subject to the pressure of the virialized hot gas.
We present results of high resolution (~ 55000) spectral observations of 830 photometrically pre-selected candidate red giants in the magnitude range of V = 9-12. We develop a pipeline for automated determination of the stellar atmospheric parameters from these spectra and estimate T_eff, logg, [Fe/H], microturbulence velocity, and projected rotational velocities, vsini, for the stars. The analysis confirms that the candidate selection procedure yielded red giants with very high success rate. We show that most of these stars are G and K giants with slightly subsolar metallicity ([Fe/H] ~ -0.3 dex) An analysis of Mg abundances in the sample results in consistency of the [Mg/Fe] vs [Fe/H] trend with published results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا