ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a new segmentation model combining common regularization energies, e.g. Markov Random Field (MRF) potentials, and standard pairwise clustering criteria like Normalized Cut (NC), average association (AA), etc. These clustering and regulariz ation models are widely used in machine learning and computer vision, but they were not combined before due to significant differences in the corresponding optimization, e.g. spectral relaxation and combinatorial max-flow techniques. On the one hand, we show that many common applications using MRF segmentation energies can benefit from a high-order NC term, e.g. enforcing balanced clustering of arbitrary high-dimensional image features combining color, texture, location, depth, motion, etc. On the other hand, standard clustering applications can benefit from an inclusion of common pairwise or higher-order MRF constraints, e.g. edge alignment, bin-consistency, label cost, etc. To address joint energies like NC+MRF, we propose efficient Kernel Cut algorithms based on bound optimization. While focusing on graph cut and move-making techniques, our new unary (linear) kernel and spectral bound formulations for common pairwise clustering criteria allow to integrate them with any regularization functionals with existing discrete or continuous solvers.
Many applications in vision require estimation of thin structures such as boundary edges, surfaces, roads, blood vessels, neurons, etc. Unlike most previous approaches, we simultaneously detect and delineate thin structures with sub-pixel localizatio n and real-valued orientation estimation. This is an ill-posed problem that requires regularization. We propose an objective function combining detection likelihoods with a prior minimizing curvature of the center-lines or surfaces. Unlike simple block-coordinate descent, we develop a novel algorithm that is able to perform joint optimization of location and detection variables more effectively. Our lower bound optimization algorithm applies to quadratic or absolute curvature. The proposed early vision framework is sufficiently general and it can be used in many higher-level applications. We illustrate the advantage of our approach on a range of 2D and 3D examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا