ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.
Photonic circuits in which stateful components are coupled via guided electromagnetic fields are natural candidates for native implementation of iterative stochastic algorithms based on propagation of information around a graph. Conversely, such mess age passing algorithms suggest novel circuit architectures for signal processing and computation that are well matched to nanophotonic device physics. Here we construct and analyze a quantum optical model of a photonic circuit for iterative decoding of a class of low-density parity-check (LDPC) codes called expander codes. Our circuit can be understood as an open quantum system whose autonomous dynamics map straightforwardly onto the subroutines of an LDPC decoding scheme, with several attractive features: it can operate in the ultra-low power regime of photonics in which quantum fluctuations become significant, is robust to noise and component imperfections, achieves comparable performance to known iterative algorithms for this class of codes, and provides an instructive example of how nanophotonic cavity quantum electrodynamic components can enable useful new information technology even if the solid-state qubits on which they are based are heavily dephased and cannot support large-scale entanglement.
Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC Hardware Description Language (VHDL), we demonstrate a computer-aided schematic capture workflow f or modeling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optical components, and demonstrate a computational approach to hierarchical model reduction.
We reapply our approach to designing nanophotonic quantum memories to formulate an optical network that autonomously protects a single logical qubit against arbitrary single-qubit errors. Emulating the 9 qubit Bacon-Shor subsystem code, the network r eplaces the traditionally discrete syndrome measurement and correction steps by continuous, time-independent optical interactions and coherent feedback of unitarily processed optical fields.
Nanophotonic technologies offer great promise for ultra-low power optical signal processing, but relatively few nonlinear-optical phenomena have yet been explored as bases for robust digital modulation/switching~cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a single two-level system (TLS) coupled strongly to an optical resonator can impart binary phase modulation on a saturating probe beam. Our experiment relies on spontaneous emission to induce occasional transitions between positive and negative phase shifts---with each such edge corresponding to a dissipated energy of just one photon ($approx 0.23$ aJ)---but an optical control beam could be used to trigger additional phase switching at signalling rates above this background. Although our ability to demonstrate controlled switching in our atom-based experiment is limited, we discuss prospects for exploiting analogous physics in a nanophotonic device incorporating a quantum dot as the TLS to realize deterministic binary phase modulation with control power in the aJ/edge regime.
Quantum error correction (QEC) is fundamental for quantum information processing but entails a substantial overhead of classically-controlled quantum operations, which can be architecturally cumbersome to accommodate. Here we discuss a novel approach to designing elementary QEC memory cells, in which all control operations are performed autonomously by an embedded optical feedback loop. Our approach is natural for nanophotonic implementations in which each qubit can be coupled to its own optical resonator, and our design for a memory cell based on the quantum bit-flip or phase-flip code requires only five qubit-cavities (three for the register and two for the controller) connected by wave-guides. The photonic QEC circuit is entirely on-chip, requiring no external clocking or control, and during steady-state operation would only need to be powered by the injection of constant-amplitude coherent fields.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا