ترغب بنشر مسار تعليمي؟ اضغط هنا

We review a collection of models of random simplicial complexes together with some of the most exciting phenomena related to them. We do not attempt to cover all existing models, but try to focus on those for which many important results have been re cently established rigorously in mathematics, especially in the context of algebraic topology. In application to real-world systems, the reviewed models are typically used as null models, so that we take a statistical stance, emphasizing, where applicable, the entropic properties of the reviewed models. We also review a collection of phenomena and features observed in these models, and split the presented results into two classes: phase transitions and distributional limits. We conclude with an outline of interesting future research directions.
Models of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The probability of connections in the network is then a function of these variables. Real-world networks evolve over time, and many exhibit dynamic s of node characteristics as well as of linking structure. Here we introduce and study natural temporal extensions of static hidden-variable network models with stochastic dynamics of hidden variables and links. The rates of the hidden variable dynamics and link dynamics are controlled by two parameters, and snapshots of networks in the dynamic models may or may not be equivalent to a static model, depending on the location in the parameter phase diagram. We quantify deviations from static-like behavior, and examine the level of structural persistence in the considered models. We explore tempor
Networks with underlying metric spaces attract increasing research attention in network science, statistical physics, applied mathematics, computer science, sociology, and other fields. This attention is further amplified by the current surge of acti vity in graph embedding. In the vast realm of spatial network models, only a few reproduce even the most basic properties of real-world networks. Here, we focus on three such properties---sparsity, small worldness, and clustering---and identify the general subclass of spatial homogeneous and heterogeneous network models that are sparse small worlds and that have nonzero clustering in the thermodynamic limit. We rely on the maximum entropy approach where network links correspond to noninteracting fermions whose energy dependence on spatial distances determines network small worldness and clustering.
Existing information-theoretic frameworks based on maximum entropy network ensembles are not able to explain the emergence of heterogeneity in complex networks. Here, we fill this gap of knowledge by developing a classical framework for networks base d on finding an optimal trade-off between the information content of a compressed representation of the ensemble and the information content of the actual network ensemble. In this way not only we introduce a novel classical network ensemble satisfying a set of soft constraints but we are also able to calculate the optimal distribution of the constraints. We show that for the classical network ensemble in which the only constraints are the expected degrees a power-law degree distribution is optimal. Also, we study spatially embedded networks finding that the interactions between nodes naturally lead to non-uniform spread of nodes in the space, with pairs of nodes at a given distance not necessarily obeying a power-law distribution. The pertinent features of real-world air transportation networks are well described by the proposed framework.
Link prediction is a paradigmatic problem in network science with a variety of applications. In latent space network models this problem boils down to ranking pairs of nodes in the order of increasing latent distances between them. The network model with hyperbolic latent spaces has a number of attractive properties suggesting it must be a powerful tool to predict links, but the past work in this direction reported mixed results. Here we perform systematic investigation of the utility of latent hyperbolic geometry for link prediction in networks. We first show that some measures of link prediction accuracy are extremely sensitive with respect to inaccuracies in the inference of latent hyperbolic coordinates of nodes, so that we develop a new coordinate inference method that maximizes the accuracy of such inference. Applying this method to synthetic and real networks, we then find that while there exists a multitude of competitive methods to predict obvious easy-to-predict links, among which hyperbolic link prediction is rarely the best but often competitive, it is the best, often by far, when the task is to predict less obvious missing links that are really hard to predict. These links include missing links in incomplete networks with large fractions of missing links, missing links between nodes that do not have any common neighbors, and missing links between dissimilar nodes at large latent distances. Overall these results suggest that the harder a specific link prediction task is, the more seriously one should consider using hyperbolic geometry.
80 - Dmitri Krioukov 2016
Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensembl e of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all nodes as in real networks, are thus a consequence of network geometricity. The methods we use to prove this are quite general and applicable to other network ensembles, geometric or not, and to certain problems in quantum gravity.
In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an exception. Most network models can be classified as either equilibrium or growing. Here we show that under certain conditions there exists an equilibrium formulation for any growing network model, and vice versa. The equivalence between the equilibrium and nonequilibrium formulations is exact not only asymptotically, but even for any finite system size. The required conditions are satisfied in random geometric graphs in general and causal sets in particular, and to a large extent in some real networks.
108 - Dmitri Krioukov 2012
A way to fight your traffic tickets. The paper was awarded a special prize of $400 that the author did not have to pay to the state of California. In view of enormous, extremely surprising and completely unexpected public interest to this work, we have added an appendix answering the two most common questions.
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these netw orks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution , degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا