ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Djalil Chafai 2009
Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its mixed components. For instance, mixing Gaussian laws may produce a potential with multiple deep wells. We study in the present work fi ne properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed family. Additionally, our analysis of Sobolev type inequalities for two-component mixtures reveals natural relations with some kind of band isoperimetry and support constrained interpolation via mass transportation. We show that the Poincare constant of a two-component mixture may remain bounded as the mixture proportion goes to 0 or 1 while the logarithmic Sobolev constant may surprisingly blow up. This counter-intuitive result is not reducible to support disconnections, and appears as a reminiscence of the variance-entropy comparison on the two-point space. As far as mixtures are concerned, the logarithmic Sobolev inequality is less stable than the Poincare inequality and the sub-Gaussian concentration for Lipschitz functions. We illustrate our results on a gallery of concrete two-component mixtures. This work leads to many open questions.
The TCP window size process appears in the modeling of the famous Transmission Control Protocol used for data transmission over the Internet. This continuous time Markov process takes its values in $[0,infty)$, is ergodic and irreversible. It belongs to the Additive Increase Multiplicative Decrease class of processes. The sample paths are piecewise linear deterministic and the whole randomness of the dynamics comes from the jump mechanism. Several aspects of this process have already been investigated in the literature. In the present paper, we mainly get quantitative estimates for the convergence to equilibrium, in terms of the $W_1$ Wasserstein coupling distance, for the process and also for its embedded chain.
The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinet ic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time diffusive behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic probabilistic models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا