ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright single pulses of many radio pulsars show rapid intensity fluctuations (called microstructure) when observed with time resolutions of tens of microseconds. Here, we report an analysis of Arecibo 59.5 $mu$sec-resolution polarimetric observations of 11 P-band and 32 L-band pulsars with periods ranging from 150 msec to 3.7 sec. These higher frequency observations forms the most reliable basis for detailed microstructure studies. Close inspection of individual pulses reveals that most pulses exhibit quasiperiodicities with a well-defined periodicity timescale ($P_{mu}$). While we find some pulses with deeply modulating microstructure, most pulses show low-amplitude modulations on top of broad smooth subpulses features, thereby making it difficult to infer periodicities. We have developed a method for such low-amplitude fluctuations wherein a smooth subpulse envelope is subtracted from each de-noised subpulse; the fluctuating portion of each subpulse is then used to estimate $P_{mu}$ via autocorrelation analysis. We find that the microstructure timescale $P_{mu}$ is common across all Stokes parameters of polarized pulsar signals. Moreover, no clear signature of curvature radiation in vacuum in highly resolved microstructures was found. Our analysis further shows strong correlation between $P_mu$ and the pulsar period $P$. We discuss implications of this result in terms of a coherent radiation model wherein radio emission arises due to formation and acceleration of electron-positron pairs in an inner vacuum gap over magnetic polar cap, and a subpulse corresponds to a series of non-stationary sparking discharges. We argue that in this model, $P_{mu}$ reflects the temporal modulation of non-stationary plasma flow.
Precursors and postcursors (PPCs) are rare emission components detected in a handful of pulsars that appear beyond the main pulse emission, in some cases far away from it. In this paper we attempt to characterize the PPC emission in relation to the p ulsar main pulse geometry. In our analysis we find that PPC components have properties very different from that of outer conal emission. The separation of the PPC components from the main pulse center remains constant with frequency. In addition the beam opening angles corresponding to the separation of PPC components from the pulsar center are much larger than the largest encountered in conal emission. Pulsar radio emission is believed to originate within the magnetic polar flux tubes due to the growth of instabilities in the outflowing relativistic plasma. Observationally, there is strong evidence that the main pulse emission originates at altitudes of about 50 neutron star radii for a canonical pulsar. Currently, the most plausible radio emission model that can explain main pulse emission is the coherent curvature radiation mechanism, wherein relativistic charged solitons are formed in a non-stationary electron-positron-pair plasma. The wider beam opening angles of PPC require the emission to emanate from larger altitudes as compared to the main pulse, if both these components originate by the same emission mechanism. We explore this possibility and find that this emission mechanism is probably inapplicable at the height of the PPC emission. We propose that the PPC emission represents a new type of radiation from pulsars with a mechanism different from that of the main pulse.
The research presented here examines an 8-hour observation of pulsar B1822-09,taken by the Giant Metrewave Radio Telescope. B1822-09 has been known to exhibit two stable emission modes, the B-mode, where the precursor (PC) `turns-on, and the Q-mode, which is defined by interpulse (IP) emission. The results of our analysis, of this extremely long observation, have shown that B1822-09 exhibits at least three other emission behaviors that have not been seen before in other similar pulsars or in other observations of B1822-09. These three behaviors can be described as: Q-mode emission with PC emission, B-mode emission with IP emission, and instances where both the PC and IP are `on when transitioning from one mode to the other. The pulse structure has been found to be more complex than previously thought. The MP has an inner cone/core triple (T) configuration together with a central sightline traverse. The IP is a 15/degr-wide region, that along with the MP originate from an open dipolar field. The PC emission comes from a still unknown source. We argue that the PC emission arises within the same region as the MP, but likely comes from higher in the magnetosphere. Overall, our analyses strongly suggest that mode changes allow information transfer between the two magnetic polar regions and contribute to global magnetospheric changes.
We report analysis of an 8 hr observation of PSR B0943+10 at 325 MHz performed at the Giant Metrewave Radio Telescope (GMRT) in India. B0943+10 is well known for displaying regular sub-pulse drifting and two emission modes. We investigate the modal b ehavior of B0943+10. By reconstructing an entire B mode from two consecutive B modes, we estimate that the pulsar spends roughly 7.5 hrs in the B mode and about 2.2 hrs in the Q mode, on average. Although the pulsar can switch modes within one pulse, the sub-pulse drift rate changes with a characteristic time of 1.2 hrs over the course of a B mode. Under the subbeam carousel model we find the drift-rate changes are produced by a 10% increase in the average number of subbeams and a 16% increase in the carousel circulation time. We speculate that under the partially screened gap model the increase in circulation time should be related to a small increase in the neutron star surface temperature.
This paper reports new observations of pulsars B0943+10 and B1822--09 carried out with the Arecibo Observatory (AO) and the Giant Metrewave Radio Telescope (GMRT), respectively. Both stars exhibit two stable emission modes. We report the discovery in B0943+10 of a highly linearly polarized precursor component that occurs primarily in only one mode. This emission feature closely resembles B1822-09s precursor which also occurs brightly in only one mode. B0943+10s other mode is well known for its highly regular drifting subpulses that are apparently produced by a rotating carousel system of 20 beamlets. Similary, B1822-09 exhibits subpulse-modulation behavior only in the mode where its precursor is absent. We survey our 18 hours of B0943+10 observations and find that the sideband-modulation features, from which the carousel-rotation time can be directly determined, occur rarely--less than 5% of the time--but always indicating 20 beamlets. We present an analysis of B1822-09s modal modulation characteristics at 325-MHz and compare them in detail with B0943+10. The pulsar never seems to null, and we find a 43-rotation-period feature in the stars Q mode that modulates the interpulse as well as the conal features in the main pulse. We conclude that B1822-09 must have a nearly orthogonal geometry and that its carousel circulation time is long compared to the modal sub-sequences available in our observations, and the mainpulse/interpulse separation is almost exactly 180 degrees. We conclude the precursors for both stars are incompatible with core-cone emission. We assess the interesting suggestion by Dyks et al. that downward-going radiation produces B1822-09s precursor emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا