ترغب بنشر مسار تعليمي؟ اضغط هنا

We study strain relaxation and surface damage of GaN nanopillar arrays fabricated using inductively coupled plasma (ICP) etching and post etch wet chemical treatment. We controlled the shape and surface damage of such nanopillar structures through se lection of etching parameters. We compared different substrate temperatures and different chlorine-based etch chemistries to fabricate high quality GaN nanopillars. Room temperature photoluminescence and Raman scattering measurements were carried to study the presence of surface defect and strain relaxation on these nanostructures, respectively. We found that wet KOH etching can remove the side wall damages caused by dry plasma etching, leading to better quality of GaN nanopillars arrays. The Si material underneath the GaN pillars was removed by KOH wet etching, leaving behind a fine Si pillar to support the GaN structure. Substantial strain relaxations were observed in these structures from room temperature Raman spectroscopy measurements. Room temperature Photoluminescence spectroscopy shows the presence of whispering gallery modes from these the nano disks structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا