ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high angular resolution observations of the HCN(1-0) emission (at ~1 or ~34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the AGN. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ~1 (~34 pc) resolution, and consistent with the Seyfert 2 classification picture.
33 - Dinh-V-Trung , Jeremy Lim 2008
We present high angular resolution observations of the HC$_3$N J=5--4 line from the Egg nebula, which is the archetype of protoplanetary nebulae. We find that the HC$_{rm 3}$N emission in the approaching and receding portion of the envelope traces a clumpy hollow shell, similar to that seen in normal carbon rich envelopes. Near the systemic velocity, the hollow shell is fragmented into several large blobs or arcs with missing portions correspond spatially to locations of previously reported high--velocity outlows in the Egg nebula. This provides direct evidence for the disruption of the slowly--expanding envelope ejected during the AGB phase by the collimated fast outflows initiated during the transition to the protoplanetary nebula phase. We also find that the intersection of fast molecular outflows previously suggested as the location of the central post-AGB star is significantly offset from the center of the hollow shell. From modelling the HC$_3$N distribution we could reproduce qualitatively the spatial kinematics of the HC$_3$N J=5--4 emission using a HC$_3$N shell with two pairs of cavities cleared by the collimated high velocity outflows along the polar direction and in the equatorial plane. We infer a relatively high abundance of HC$_3$N/H$_2$ $sim$3x10$^{-6}$ for an estimated mass--loss rate of 3x10$^{-5}$ M$_odot$ yr$^{-1}$ in the HC$_3$N shell. The high abundance of HC$_3$N and the presence of some weaker J=5--4 emission in the vicinity of the central post-AGB star suggest an unusually efficient formation of this molecule in the Egg nebula.
168 - Dinh-V-Trung , Jeremy Lim 2008
We present high angular resolution observations of HC$_3$N J=5--4 line and 7 mm continumm emission from the extreme carbon star CIT 6. We find that the 7 mm continuum emission is unresolved and has a flux consistent with black-body thermal radiation from the central star. The HC$_3$N J=5--4 line emission originates from an asymmetric and clumpy expanding envelope comprising two separate shells of HC$_3$N J=5--4 emission: (i) a faint outer shell that is nearly spherical which has a radius of 8arcsec; and (ii) a thick and incomplete inner shell that resembles a one-arm spiral starting at or close to the central star and extending out to a radius of about 5arcsec. Our observations therefore suggest that the mass loss from CIT 6 is strongly modulated with time and highly anisotropic. Furthermore, a comparison between the data and our excitation modelling results suggests an unusually high abundance of HC$_3$N in its envelope. We discuss the possibility that the envelope might be shaped by the presence of a previously suggested possible binary companion. The abundance of HC$_3$N may be enhanced in spiral shocks produced by the interaction between the circumstellar envelope of CIT 6 and its companion star.
We present the Submillimeter Array observation of the CO J=2-1 transition towards the northern galaxy, ARP 302N, of the early merging system, ARP 302. Our high angular resolution observation reveals the extended spatial distribution of the molecular gas in ARP 302N. We find that the molecular gas has a very asymmetric distribution with two strong concentrations on either side of the center together with a weaker one offset by about 8 kpc to the north. The molecular gas distribution is also found to be consistent with that from the hot dust as traced by the 24 micro continuum emission observed by the Spitzer. The line ratio of CO J=2-1/1-0 is found to vary strongly from about 0.7 near the galaxy center to 0.4 in the outer part of the galaxy. Excitation analysis suggests that the gas density is low, less than 10$^3$ cm$^{-3}$, over the entire galaxy. By fitting the SED of ARP 302N in the far infrared we obtain a dust temperature of $Trm_d$=26-36 K and a dust mass of M$rm _{dust}$=2.0--3.6$times10^8$ M$rm_odot$. The spectral index of the radio continuum is around 0.9. The spatial distribution and spectral index of the radio continuum emission suggests that most of the radio continuum emission is synchrotron emission from the star forming regions at the nucleus and ARP302N-cm. The good spatial correspondance between the 3.6 cm radio continuum emission, the Spitzer 8 & 24 $mu$m data and the high resolution CO J=2-1 observation from the SMA shows that there is the asymmetrical star forming activities in ARP 302N.
217 - J. H. He , Dinh-V-Trung , S. Kwok 2008
We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and HN13C are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundance difference among the three 13C substituted isotopic isomers of HC3N is reported. Isotopic ratios of C and O are confirmed to be non-solar while those of S and Si to be nearly solar. Column densities have been estimated for 15 molecular species. Modified spectroscopic parameters have been calculated for NaCN, Na13CN, KCN and SiC2. Transition frequencies from the present observations were used to improve the spectroscopic parameters of Si13CC, 29SiC2 and 30SiC2.
We have imaged in CO(2-1) the molecular gas in NGC 1275 (Perseus A), the cD galaxy at the center of the Perseus Cluster, at a spatial resolution of $sim$1 kpc over a central region of radius $sim$ 10 kpc. Per A is known to contain $sim$1.3x10$^{10}$ M$_odot$ of molecular gas, which has been proposed to be captured from mergers with or ram-pressure stripping of gas-rich galaxies, or accreted from a X-ray cooling flow. The molecular gas detected in our image has a total mass of $sim$4x10$^9$ M$_odot$, and for the first time can be seen to be concentrated in three radial filaments with lengths ranging from at least 1.1-2.4 kpc all lying in the east-west directions spanning the center of the galaxy to radii of $sim$8 kpc. The eastern and outer western filaments exhibit larger blueshifted velocities with decreasing radii, whereas the inner western filament spans the systemic velocity of the galaxy. The molecular gas shows no signature of orbital motion, and is therefore unlikely to have been captured from gas-rich galaxies. Instead, we are able to reproduce the observed kinematics of the two outer filaments as free-fall in the gravitational potential of Per A, as would be expected if they originate from a X-ray cooling flow. Indeed, all three filaments lie between two prominent X-ray cavities carved out by radio jets from Per A, and closely resembles the spatial distribution of the coolest X-ray gas in the cluster core. The inferred mass-deposition rate into the two outermost filaments alone is roughly 75 M$_odot$ yr$^{-1}$. This cooling flow can provide a nearly continuous supply of molecular gas to fuel the active nucleus in Per A.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا