ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce and analyze stochastic optimization methods where the input to each gradient update is perturbed by bounded noise. We show that this framework forms the basis of a unified approach to analyze asynchronous implementations of stochastic op timization algorithms.In this framework, asynchronous stochastic optimization algorithms can be thought of as serial methods operating on noisy inputs. Using our perturbed iterate framework, we provide new analyses of the Hogwild! algorithm and asynchronous stochastic coordinate descent, that are simpler than earlier analyses, remove many assumptions of previous models, and in some cases yield improved upper bounds on the convergence rates. We proceed to apply our framework to develop and analyze KroMagnon: a novel, parallel, sparse stochastic variance-reduced gradient (SVRG) algorithm. We demonstrate experimentally on a 16-core machine that the sparse and parallel version of SVRG is in some cases more than four orders of magnitude faster than the standard SVRG algorithm.
It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1) a simple and efficient algorithm tha t achieves an $n^{-1/3}$-approximation; 2) NP-hardness of approximation to within $(1-varepsilon)$, for some small constant $varepsilon > 0$; 3) SSE-hardness of approximation to within any constant factor; and 4) an $expexpleft(Omegaleft(sqrt{log log n}right)right)$ (quasi-quasi-polynomial) gap for the standard semidefinite program.
Given a similarity graph between items, correlation clustering (CC) groups similar items together and dissimilar ones apart. One of the most popular CC algorithms is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and obta ins a 3-approximation ratio. Unfortunately, KwikCluster in practice requires a large number of clustering rounds, a potential bottleneck for large graphs. We present C4 and ClusterWild!, two algorithms for parallel correlation clustering that run in a polylogarithmic number of rounds and achieve nearly linear speedups, provably. C4 uses concurrency control to enforce serializability of a parallel clustering process, and guarantees a 3-approximation ratio. ClusterWild! is a coordination free algorithm that abandons consistency for the benefit of better scaling; this leads to a provably small loss in the 3-approximation ratio. We provide extensive experimental results for both algorithms, where we outperform the state of the art, both in terms of clustering accuracy and running time. We show that our algorithms can cluster billion-edge graphs in under 5 seconds on 32 cores, while achieving a 15x speedup.
We explain theoretically a curious empirical phenomenon: Approximating a matrix by deterministically selecting a subset of its columns with the corresponding largest leverage scores results in a good low-rank matrix surrogate. To obtain provable guar antees, previous work requires randomized sampling of the columns with probabilities proportional to their leverage scores. In this work, we provide a novel theoretical analysis of deterministic leverage score sampling. We show that such deterministic sampling can be provably as accurate as its randomized counterparts, if the leverage scores follow a moderately steep power-law decay. We support this power-law assumption by providing empirical evidence that such decay laws are abundant in real-world data sets. We then demonstrate empirically the performance of deterministic leverage score sampling, which many times matches or outperforms the state-of-the-art techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا