ترغب بنشر مسار تعليمي؟ اضغط هنا

We set up the formalism of holographic renormalization for the matter-coupled two-dimensional maximal supergravity that captures the low-lying fluctuations around the non-conformal D0-brane near-horizon geometry. As an application we compute holograp hically one- and two-point functions of the BFSS matrix quantum mechanics and its supersymmetric $SO(3)times SO(6)$ deformation.
We construct rigid supersymmetric theories for interacting vector and tensor multiplets on six-dimensional Riemannian spin manifolds. Analyzing the Killing spinor equations, we derive the constraints on these theories. To this end, we reformulate the conditions for supersymmetry as a set of necessary and sufficient conditions on the geometry. The formalism is illustrated with a number of examples, including manifolds that are hermitian, strong Kaehler with torsion. As an application, we show that the path integral of pure super Yang-Mills theory defined on a Calabi-Yau threefold M_6 localizes on stable holomorphic bundles over M_6.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا