ترغب بنشر مسار تعليمي؟ اضغط هنا

We update two kinds of results obtained with the SWAN instrument on board SOHO. First, we use H cell data recorded in 2001 and derive the H flow direction in the same way we performed the study at solar minimum. We compare with the Helium flow and do ing so we correct for the coordinate system change between the Ulysses and SOHO mission. The deflection plane we obtain is compatible with the previous result within error bars, confirming the predominant role of the interstellar magnetic field. Secondly, we extend the derivation of solar wind ionization temporal evolution as a function of heliolatitude. The pattern for the present solar minimum is strikingly different from the previous minimum, with a much wider slow solar wind equatorial belt which persists until at least 2008. Comparing with synoptic LASCO/C2 electron densities we infer from a preliminary study that the acceleration of the high speed solar wind occurs at a higher altitude during this minimum, a change expansion models should be able to explain.
Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray images are a powerful tool for the study of solar wind - planetary interfaces. However, the simulation results reveal several quantitative discrepancies compared to the observations. Typical solar wind and neutral coronae conditions corresponding to the 2003 observation period of Mars cannot reproduce the high luminosity or the corresponding very extended halo observed with XMM-Newton. Potential explanations of these discrepancies are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا