ترغب بنشر مسار تعليمي؟ اضغط هنا

The typical bulk model describing 2D topological insulators (TI) consists of two types of spin-orbit terms, the so-called Dirac term which induces out-of plane spin polarization and the Rashba term which induces in-plane spin polarization. We show th at for some parameters of the Fermi energy, the beam splitter device built on 2D TIs can achieve higher in-plane spin polarization than one built on materials described by the Rashba model itself. Further, due to high tunability of the electron density and the asymmetry of the quantum well, spin polarization in different directions can be obtained. While in the normal (topologically trivial) regime the in-plane spin polarization would dominate, in the inverted regime the out-of-plane polarization is more significant not only in the band gap but also for small Fermi energies above the gap. Further, we suggest a double beam splitter scheme, to measure in-plane spin current all electrically. Although we consider here as an example HgTe/CdTe quantum wells, this scheme could be also promising for InAs/GaSb QWs where the in- and out-of-plane polarization could be achieved in a single device.
We demonstrate how non-Abelian geometric phases can be used to universally process a spin qubit in heavy hole quantum dots in the absence of magnetic fields. A time dependent electric quadrupole field is used to perform any desired single qubit opera tion by virtue of non-Abelian holonomy. During the proposed operations, the degeneracy of the time dependent two level system representing the qubit is not split. Since time reversal symmetry is preserved and hyperfine coupling is known to be weak in spin qubits based on heavy holes, we expect very long coherence times in the proposed setup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا