ترغب بنشر مسار تعليمي؟ اضغط هنا

At low metallicity the B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, it was expected a larger number of fast rotators in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, the SMC open clusters were examined and an occurence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and of the stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theoretical indications of long gamma-ray burst progenitors, we identify the low metallicity massive Be and Oe stars as potential LGRB progenitors. Therefore the expected rates and numbers of LGRB are calculated and compared to the observed ones, leading to a good probability that low metallicity Be/Oe stars are actually LGRB progenitors.
Star clusters are privileged laboratories for studying the evolution of massive stars (OB stars). One particularly interesting question concerns the phases, during which the classical Be stars occur, which unlike HAe/Be stars, are not pre-main sequen ce objects, nor supergiants. Rather, they are extremely rapidly rotating B-type stars with a circumstellar decretion disk formed by episodic ejections of matter from the central star. To study the impact of mass, metallicity, and age on the Be phase, we observed SMC open clusters with two different techniques: 1) with the ESO-WFI in its slitless mode, which allowed us to find the brighter Be and other emission-line stars in 84 SMC open clusters 2) with the VLT-FLAMES multi-fiber spectrograph in order to determine accurately the evolutionary phases of Be stars in the Be-star rich SMC open cluster NGC 330. Based on a comparison to the Milky Way, a model of Be stellar evolution / appearance as a function of metallicity and mass / spectral type is developed, involving the fractional critical rotation rate as a key parameter.
This paper checks on the roles of metallicity and evolutionary age in the appearance of the so-called Be phenomenon. Slitless CCD spectra were obtained covering the bulk of the Small Magellanic Cloud. For Halpha line emission twice as strong as the a mbient continuum, the survey is complete to spectral type B2/B3 on the main sequence. About 8120 spectra of 4437 stars were searched for emission lines in 84 open clusters. 370 emission-line stars were found, among them at least 231 near the main sequence. For 176 of them, photometry could be found in the OGLE database. For comparison with a higher-metallicity environment, the Galactic sample of the photometric Halpha survey by McSwain & Gies (2005) was used. Among early spectral sub-types, Be stars are more frequent by a factor 3-5 in the SMC than in the Galaxy. The distribution with spectral type is similar in both galaxies, i.e. not strongly dependent on metallicity. The fraction of Be stars does not seem to vary with local star density. The Be phenomenon mainly sets in towards the end of the main-sequence evolution (this trend may be more pronounced in the SMC); but some Be stars already form with Be-star characteristics. In all probability, the fractional critical angular rotation rate, omc, is one of the main parameters governing the occurrence of the Be phenomenon. If the Be character is only acquired during the course of evolution, the key circumstance is the evolution of omc, which not only is dependent on metallicity but differently so for different mass ranges.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا