ترغب بنشر مسار تعليمي؟ اضغط هنا

While the self-learning kinetic Monte Carlo (SLKMC) method enables the calculation of transition rates from a realistic potential, implementations of it were usually limited to one specific surface orientation. An example is the fcc (111) surface in Latz et al. 2012, J. Phys.: Condens. Matter 24, 485005. This work provides an extension by means of detecting the local orientation, and thus allows for the accurate simulation of arbitrarily shaped surfaces. We applied the model to the diffusion of Ag monolayer islands and voids on a Ag(111) and Ag(001) surface, as well as the relaxation of a three-dimensional spherical particle.
Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.
Cohesive powders form agglomerates that can be very porous. Hence they are also very fragile. Consider a process of complete fragmentation on a characteristic length scale $ell$, where the fragments are subsequently allowed to settle under gravity. I f this fragmentation-reagglomeration cycle is repeated sufficiently often, the powder develops a fractal substructure with robust statistical properties. The structural evolution is discussed for two different models: The first one is an off-lattice model, in which a fragment does not stick to the surface of other fragments that have already settled, but rolls down until it finds a locally stable position. The second one is a simpler lattice model, in which a fragment sticks at first contact with the agglomerate of fragments that have already settled. Results for the fragment size distribution are shown as well. One can distinguish scale invariant dust and fragments of a characteristic size. Their role in the process of structure formation will be addressed.
A new contribution to friction is predicted to occur in systems with magnetic correlations: Tangential relative motion of two Ising spin systems pumps energy into the magnetic degrees of freedom. This leads to a friction force proportional to the are a of contact. The velocity and temperature dependence of this force are investigated. Magnetic friction is strongest near the critical temperature, below which the spin systems order spontaneously. Antiferromagnetic coupling leads to stronger friction than ferromagnetic coupling with the same exchange constant. The basic dissipation mechanism is explained. If the coupling of the spin system to the heat bath is weak, a surprising effect is observed in the ordered phase: The relative motion acts like a heat pump cooling the spins in the vicinity of the friction surface.
The systematic errors due to the practical implementation of the Contact Dynamics method for simulation of dense granular media are examined. It is shown that, using the usual iterative solver to simulate a chain of rigid particles, effective elastic ity and sound propagation with a finite velocity occur. The characteristics of these phenomena are investigated analytically and numerically in order to assess the limits of applicability of this simulation method and to compare it with soft particle molecular dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا