ترغب بنشر مسار تعليمي؟ اضغط هنا

General Relativity predicts only two tensor polarization modes for gravitational waves while at most six possible polarization modes of gravitational waves are allowed in the general metric theory of gravity. The number of polarization modes is total ly determined by the specific modified theory of gravity. Therefore, the determination of polarization modes can be used to test gravitational theory. We introduce a concrete data analysis pipeline for a single space-based detector such as LISA to detect the polarization modes of gravitational waves. Apart from being able to detect mixtures of tensor and extra polarization modes, this method also has the added advantage that no waveform model is needed and monochromatic gravitational waves emitted from any compact binary system with known sky position and frequency can be used. We apply the data analysis pipeline to the reference source J0806.3+1527 of TianQin with 90-days simulation data, and we show that $alpha$ viewed as an indicative of the intrinsic strength of the extra polarization component relative to the tensor modes can be limited below 0.5 for LISA and below 0.2 for Taiji. We investigate the possibility to detect the nontensorial polarization modes with the combined network of LISA, TianQin and Taiji and find that $alpha$ can be limited below 0.2.
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the an alytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as $1/f^2$, the averaged response function for the longitudinal mode falls off as $1/f$ and the averaged response function for the vector mode falls off as $ln(f)/f^2$.
In this work, we discuss the polarization contents of Einstein-ae ther theory and the generalized tensor-vector-scalar (TeVeS) theory, as both theories have a normalized timelike vector field. We derive the linearized equations of motion around the f lat spacetime background using the gauge-invariant variables to easily separate physical degrees of freedom. We find the plane wave solutions are then found, and identify the polarizations by examining the geodesic deviation equations. We find that there are five polarizations in Einstein-ae ther theory and six polarizations in the generalized TeVeS theory. In particular, the transverse breathing mode is mixed with the pure longitudinal mode. We also discuss the experimental tests of the extra polarizations in Einstein-ae ther theory using pulsar timing arrays combined with the gravitational-wave speed bound derived from the observations on GW 170817 and GRB 170817A. It turns out that it might be difficult to use pulsar timing arrays to distinguish different polarizations in Einstein-ae ther theory. The same speed bound also forces one of the propagating modes in the generalized TeVeS theory to travel much faster than the speed of light. Since the strong coupling problem does not exist in some parameter subspaces, the generalized TeVeS theory is excluded in these parameter subspaces.
We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six polarizations by the Newman-Penrose quantities is based on weak, plane and null gravitational waves, so it is not applicable to the massive mode.
With the usual definitions for the entropy and the temperature associated with the apparent horizon, we show that the unified first law on the apparent horizon is equivalent to the Friedmann equation for the scalar--tensor theory with non-minimally d erivative coupling. The second law of thermodynamics on the apparent horizon is also satisfied. The results support a deep and fundamental connection between gravitation, thermodynamics, and quantum theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا