ترغب بنشر مسار تعليمي؟ اضغط هنا

Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some planetary nebulae (PNe) now enable us to study the DIBs t owards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428A absorption feature is a common charateristic of fullerene PNe. Similar to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1, together with its large radial velocity, permit us to search for the presence of diffuse bands of circumstellar origin, which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 A in the fullerene-rich circumstellar environment around the PN Tc 1. Laboratory and theoretical studies of fullerenes in their multifarious manifestations (carbon onions, fullerene clusters, or even complex species formed by fullerenes and other molecules like PAHs or metals) may help solve the mystery of some of the diffuse band carriers.
In recent years, there has been increasing interest in the specific heat $C$ of insulators and semiconductors because of the availability of samples with different isotopic masses and the possibility of performing textit{ab initio} calculations of it s temperature dependence $C(T)$ using as a starting point the electronic band structure. Most of the crystals investigated are elemental (e.g., germanium) or binary (e.g., gallium nitride) semiconductors. The initial electronic calculations were performed in the local density approximation and did not include spin-orbit interaction. Agreement between experimental and calculated results was usually found to be good, except for crystals containing heavy atoms (e.g., PbS) for which discrepancies of the order of 20% existed at the low temperature maximum found for $C/T^3$. It has been conjectured that this discrepancies result from the neglect of spin-orbit interaction which is large for heavy atoms ($Delta_0sim$1.3eV for the $p$ valence electrons of atomic lead). Here we discuss measurements and textit{ab initio} calculations of $C(T)$ for crystalline bismuth ($Delta_0sim$1.7 eV), strictly speaking a semimetal but in the temperature region accessible to us ($T >$ 2K) acting as a semiconductor. We extend experimental data available in the literature and notice that the textit{ab initio} calculations without spin-orbit interaction exhibit a maximum at $sim$8K, about 20% lower than the measured one. Inclusion of spin-orbit interaction decreases the discrepancy markedly: The maximum of $C(T)$ is now only 7% larger than the measured one. Exact agreement is obtained if the spin-orbit hamiltonian is reduced by a factor of $sim$0.8.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا