ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we introduce an abstract approach to the notion of absolutely summing multilinear operators. We show that several previous results on different contexts (absolutely summing, almost summing, Cohen summing) are particular cases of our general results.
For the scalar field $mathbb{K}=mathbb{R}$ or $mathbb{C}$, the multilinear Bohnenblust--Hille inequality asserts that there exists a sequence of positive scalars $(C_{mathbb{K},m})_{m=1}^{infty}$ such that %[(sumlimits_{i_{1},...,i_{m}=1}^{N}|U(e_{i_ {^{1}}}%,...,e_{i_{m}})|^{frac{2m}{m+1}})^{frac{m+1}{2m}}leq C_{mathbb{K},m}sup_{z_{1},...,z_{m}inmathbb{D}^{N}}|U(z_{1},...,z_{m})|] for all $m$-linear form $U:mathbb{K}^{N}times...timesmathbb{K}% ^{N}rightarrowmathbb{K}$ and every positive integer $N$, where $(e_{i})_{i=1}^{N}$ denotes the canonical basis of $mathbb{K}^{N}$ and $mathbb{D}^{N}$ represents the open unit polydisk in $mathbb{K}^{N}$. Since its proof in 1931, the estimates for $C_{mathbb{K},m}$ have been improved in various papers. In 2012 it was shown that there exist constants $(C_{mathbb{K},m})_{m=1}^{infty}$ with subexponential growth satisfying the Bohnenblust-Hille inequality. However, these constants were obtained via a complicated recursive formula. In this paper, among other results, we obtain a closed (non-recursive) formula for these constants with subexponential growth.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا