ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - Xu Cheng , Detang Zhou 2021
Let $(M, g, f)$ be a $4$-dimensional complete noncompact gradient shrinking Ricci soliton with the equation $Ric+ abla^2f=lambda g$, where $lambda$ is a positive real number. We prove that if $M$ has constant scalar curvature $S=2lambda$, it must be a quotient of $mathbb{S}^2times mathbb{R}^2$. Together with the known results, this implies that a $4$-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton $Bbb{R}^4$, $Bbb{S}^{2}timesBbb{R}^{2}$ or $Bbb{S}^{3}timesBbb{R}$.
In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part o f the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton $Bbb{R}^4,$ or $Bbb{S}^{3}timesBbb{R}$, or $Bbb{S}^{2}timesBbb{R}^{2}.$ In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
152 - Shige Peng , Detang Zhou 2011
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different meth od, we generalize maximum principles of Omori and Yau to a viscosity version.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا