ترغب بنشر مسار تعليمي؟ اضغط هنا

LSQ14bdq and SN 2006oz are super-luminous, hydrogen-poor, SNe with double-humped light curves. We show that a Quark-Nova (QN; explosive transition of the neutron star to a quark star) occurring in a massive binary, experiencing two Common Envelope (C E) phases, can quantitatively explain the light curves of LSQ14bdq and SN 2006oz. The more massive component (A) explodes first as a normal SN, yielding a Neutron Star which ejects the hydrogen envelope of the companion when the system enters its first CE phase. During the second CE phase, the NS spirals into and inflates the second He-rich CE. In the process it gains mass and triggers a Quark-Nova, outside of the CO core, leaving behind a Quark Star. The first hump in our model is the QN shock re-energizing the expanded He-rich CE. The QN occurs when the He-rich envelope is near maximum size (~ 1000R_sun) and imparts enough energy to unbind and eject the envelope. Subsequent merging of the Quark Star with the CO core of component B, driven by gravitational radiation, turns the Quark star to a Black Hole. The ensuing Black Hole accretion provides sufficient power for the second brighter and long lasting hump. Our model suggests a possible connection between SLSNe-I and type Ic-BL SNe which occur when the Quark Nova is triggered inside the CO core. We estimate the rate of QNe in massive binaries during the second CE phase to be ~ 5x10^(-5) of that of core-collapse SNe.
99 - Howard Baer 2013
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using N iobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a push-pull configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.
182 - Todor Stanev 2008
We briefly describe the energy loss processes of ultrahigh energy protons, heavier nuclei and gamma rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic ray energy spectrum in propagation by the energy loss processes and the charged cosmic ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh energy cosmic rays goes into gamma rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.
47 - Todor Stanev 2008
We discuss the anisotropic arrival directions of the ultra high energy cosmic rays detected by Auger which I consider one of the biggest discoverie in astrophysics during the last year.
137 - Todor Stanev 2008
We discuss the main results that were recently published by the Auger Collaboration and their impact on our knowledge of the ultra high energy cosmic rays and neutrinos.
95 - Todor Stanev 2007
We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuatio n of UHECR on their propagation from the sources to us these sources should be at cosmologically short distance from us but are currently not identified. We also give information of the most recent experimental results including the ones reported at this conference and compare them to models of the UHECR origin.
We investigate the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. This work is a straightforward extension of Ostriker (1999) who studied the case of a straight-line trajectory. The circular orbit causes the bending of the wake in the background medium along the orbit, forming a long trailing tail. The wake distribution is thus asymmetric, giving rise to the drag forces in both opposite (azimuthal) and lateral (radial) directions to the motion of the perturber, although the latter does not contribute to orbital decay much. For subsonic motion, the density wake with a weak tail is simply a curved version of that in Ostriker and does not exhibit the front-back symmetry. The resulting drag force in the opposite direction is remarkably similar to the finite-time, linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, and develops a very pronounced tail. The supersonic tail surrounds the perturber in a trailing spiral fashion, enhancing the perturbed density at the back as well as far front of the perturber. We provide the fitting formulae for the drag forces as functions of the Mach number, whose azimuthal part is surprisingly in good agreement with the Ostrikers formula, provided Vp t=2 Rp, where Vp and Rp are the velocity and orbital radius of the perturber, respectively.
We discuss the findings of a comprehensive imaging and spectroscopic survey of the optical emission associated with the supernova remnant 3C 58 (Fesen et al. 2007) as they relate to the topic of pre-SN mass loss. Spectroscopically measured radial vel ocities of ~450 emission knots within the remnant show two distinct kinematic populations of optical knots: a high-velocity group with radial velocities in the range of 700 - 1100 km/s and a lower velocity group exhibiting radial expansion velocities below ~250 km/s. We interpret the high-velocity knots as ejecta from the SN explosion and the low-velocity knots as shocked circumstellar material likely resulting from pre-SN mass loss. The chemical signatures of the two populations also show marked differences. The high velocity group includes a substantial number of knots with notably higher [N II]/H-alpha ratios not seen in the lower velocity population, suggesting greater nitrogen enrichment in the SN ejecta than in the CSM. These results are compared with evidence for pre-SN mass loss in the Crab Nebula, perhaps the SNR most similar to 3C 58. These SNRs may comprise two case studies of pre-SN mass loss in relatively low mass (~8 - 10 solar masses) core-collapse SN progenitors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا