ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an innovating sensitivity analysis for stochastic differential equations: We study the sensitivity, when the Hurst parameter~$H$ of the driving fractional Brownian motion tends to the pure Brownian value, of probability distributions of sm ooth functionals of the trajectories of the solutions ${X^H_t}_{tin mathbb{R}_+}$ and of the Laplace transform of the first passage time of $X^H$ at a given threshold. Our technique requires to extend already known Gaussian estimates on the density of $X^H_t$ to estimates with constants which are uniform w.r.t. $t$ in in the whole half-line $R_+-{0}$ and $H$ when $H$ tends to~$tfrac{1}{2}$.
In this paper we develop sensitivity analyses w.r.t. the long-range/memory noise parameter for solutions to stochastic differential equations and the probability distributions of their first passage times at given thresholds. Here we consider the cas e of stochastic differential equations driven by fractional Brownian motions and the sensitivity, when the Hurst parameter~$H$ of the noise tends to the pure Brownian value, of probability distributions of certain functionals of the trajectories of the solutions ${X^H_t}_{tin mathbb{R}_+}$. We first get accurate sensitivity estimates w.r.t. $H$ around the critical Brownian parameter $H=tfrac{1}{2}$ of time marginal probability distributions of $X^H$. We second develop a sensitivity analysis for the Laplace transform of first passage time of $X^H$ at a given threshold. Our technique requires accurate Gaussian estimates on the density of $X^H_t$. The Gaussian estimate we obtain in Section~5 may be of interest by itself.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا