ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic helix wire is one of the most simple magnetic systems which manifest properties of both curvature and torsion. There exist two equilibrium states in the helix wire with easy-tangential anisotropy: a quasi-tangential magnetization distributio n in case of relatively small curvatures and torsions, and an onion state in opposite case. In the last case the magnetization is close to tangential one, deviations are caused by the torsion and curvature. Possible equilibrium magnetization states in the helix magnet with different anisotropy directions are studied theoretically. The torsion also essentially influences the spin-wave dynamics, acting as an effective magnetic field. Originated from the curvature induced effective Dzyaloshinskii interaction, this magnetic field leads to the coupling between the helix chirality and the magnetochirality, it breaks mirror symmetry in spin-wave spectrum. All analytical predictions on magnetization statics an dynamics are well confirmed by the direct spin lattice simulations.
We develop an approach to treat magnetic energy of a ferromagnet for arbitrary curved wires and shells on the assumption that the anisotropy contribution much exceeds the dipolar and other weak interactions. We show that the curvature induces two eff ective magnetic interactions: effective magnetic anisotropy and effective Dzyaloshinskii-like interaction. We derive an equation of magnetisation dynamics and propose a general static solution for the limit case of strong anisotropy. To illustrate our approach we consider the magnetisation structure in a ring wire and a cone surface: ground states in both systems essentially depend on the curvature excluding strictly tangential solutions even in the case of strong anisotropy. We derive also the spectrum of spin waves in such systems.
The ground state of hemispherical permalloy magnetic shell is studied. There exist two magnetic phases: the onion state and the vortex one. The phase diagram is systematically analyzed in a wide range of geometrical parameters. Possible transitions b etween different phases are analyzed using the combination of analytical calculations and micromagnetic simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا