ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider transport in the Poissonian regime between edge states in the quantum Hall effect. The backscattering potential is assumed to be arbitrary, as it allows for multiple tunneling paths. We show that the Schottky relation between the backscat tering current and noise can be established in full generality: the Fano factor corresponds to the electron charge (the quasiparticle charge) in the integer (fractional) quantum Hall effect, as in the case of purely local tunneling. We derive an analytical expression for the backscattering current, which can be written as that of a local tunneling current, albeit with a renormalized tunneling amplitude which depends on the voltage bias. We apply our results to a separable tunneling amplitude which can represent an extended point contact in the integer or in the fractional quantum Hall effect. We show that the differential conductance of an extended quantum point contact is suppressed by the interference between tunneling paths, and it has an anomalous dependence with respect to the bias voltage.
Photo-assisted transport through a mesoscopic conductor occurs when an oscillatory (AC) voltage is superposed to the constant (DC) bias which is imposed on this conductor. Of particular interest is the photo assisted shot noise, which has been invest igated theoretically and experimentally for several types of samples. For DC biased conductors, a detection scheme for finite frequency noise using a dissipative resonant circuit, which is inductively coupled to the mesoscopic device, was developped recently. We argue that the detection of the finite frequency photo-assisted shot noise can be achieved with the same setup, despite the fact that time translational invariance is absent here. We show that a measure of the photo-assisted shot noise can be obtained through the charge correlator associated with the resonant circuit, where the latter is averaged over the AC drive frequency. We test our predictions for a point contact placed in the fractional quantum Hall effect regime, for the case of weak backscattering. The Keldysh elements of the photo-assisted noise correlator are computed. For simple Laughlin fractions, the measured photo-assisted shot noise displays peaks at the frequency corresponding to the DC bias voltage, as well as satellite peaks separated by the AC drive frequency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا