ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic relaxation timescales are estimated from the autocorrelation functions obtained by dynamic light scattering experiments for Laponite suspensions with different concentrations ($C_{L}$), added salt concentrations ($C_{S}$) and temperatures ($T$). It has been shown in an earlier work [Soft Matter, 10, 3292-3300 (2014)] that the evolutions of relaxation timescales of colloidal glasses can be compared with molecular glass formers by mapping the waiting time ($t_{w}$) of the former with the inverse of thermodynamic temperature ($1/T$) of the latter. In this work, the fragility parameter $D$, which signifies the deviation from Arrhenius behavior, is obtained from fits to the time evolutions of the structural relaxation timescales. For the Laponite suspensions studied in this work, $D$ is seen to be independent of $C_{L}$ and $C_{S}$, but is weakly dependent on $T$. Interestingly, the behavior of $D$ corroborates the behavior of fragility in molecular glass formers with respect to equivalent variables. Furthermore, the stretching exponent $beta$, which quantifies the width $w$ of the spectrum of structural relaxation timescales is seen to depend on $t_{w}$. A hypothetical Kauzmann time $t_{k}$, analogous to the Kauzmann temperature for molecular glasses, is defined as the timescale at which $w$ diverges. Corresponding to the Vogel temperature defined for molecular glasses, a hypothetical Vogel time $t^{infty}_{alpha}$ is also defined as the time at which the structural relaxation time diverges. Interestingly, a correlation is observed between $t_{k}$ and $t^{infty}_{alpha}$, which is remarkably similar to that known for fragile molecular glass formers. A coupling model that accounts for the $t_{w}$-dependence of the stretching exponent is used to analyse and explain the observed correlation between $t_{k}$ and $t^{infty}_{alpha}$.
The primary and secondary relaxation timescales of aging colloidal suspensions of Laponite are estimated from intensity autocorrelation functions obtained in dynamic light scattering (DLS) experiments. The dynamical slowing down of these relaxation p rocesses are compared with observations in fragile supercooled liquids by establishing a one-to-one mapping between the waiting time since filtration of a Laponite suspension and the inverse of the temperature of a supercooled liquid that is rapidly quenched towards its glass transition temperature. New timescales, such as the Vogel time and the Kauzmann time, are extracted to describe the phenomenon of dynamical arrest in Laponite suspensions. In results that are strongly reminiscent of those extracted from supercooled liquids approaching their glass transitions, it is demonstrated that the Vogel time calculated for each Laponite concentration is approximately equal to the Kauzmann time, and that a strong coupling exists between the primary and secondary relaxation processes of aging Laponite suspensions. Furthermore, the experimental data presented here clearly demonstrates the self-similar nature of the aging dynamics of Laponite suspensions within a range of sample concentrations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا