ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - Debasish Das 2012
Muons from the decay of charmonium resonances are detected in the ALICE Experiment at the Large Hadron Collider(LHC) for pp and Pb-Pb collisions with a muon spectrometer, covering the forward rapidity region 2.5$<$ $y$ $<$4.0. Analysis of the nuclear modification factor ($R_{rm AA}$) at forward rapidity are presented and compared with mid-rapidity results from electrons in the central barrel covering $|y|<$0.9. The roles of suppression and regeneration mechanisms are discussed, as well as the importance of the results of the forthcoming p-Pb data taking for the estimate of cold nuclear matter effects on quarkonia. Perspectives for the bottomonia measurements are also given. Quarkonia results via muon channel from CMS experiment at LHC are compared with ALICE quarkonia measurements.
181 - Debasish Das 2011
The study of formation of heavy quarkonia in relativistic heavy ion collisions provides important insight into the properties of the produced high density QCD medium. Lattice QCD studies show sequential suppression of quarkonia states with increasing temperature; which affirms that a full spectroscopy, can provide us a thermometer for the matter produced under extreme conditions in relativistic heavy ion collisions and one of the most direct probes of de-confinement. Muons from the decay of charmonium resonances are detected in ALICE Experiment in p+p and Pb+Pb collisions with a muon spectrometer, covering the forward rapidity region($2.5<y<4$). The analysis of the inclusive J/$psi$ production in the first Pb+Pb data collected in the fall 2010 at a center of mass energy of $sqrt{s_{rm NN}}=2.76$ TeV is discussed. Preliminary results on the nuclear modification factor ($R_{AA}$) and the central to peripheral nuclear modification factor ($R_{CP}$) are presented.
122 - Debasish Das 2011
A precise measurement of the heavy-flavor production cross-sections in pp collisions is an essential baseline for the heavy-ion program. In addition it is a crucial test of pQCD models in the new energy regime at LHC. ALICE measures the muons from th e decay of charmonium resonances and from the semileptonic decay of heavy-flavored hadrons in its forward (-4.0 $<$ $eta$ $<$ -2.5) Muon Spectrometer. We discuss the status of the detector and present results of data taken in pp collisions at $sqrt{s}$=7 TeV.
88 - Debasish Das 2009
Theoretical models suggest that the Quantum Chromo-Dynamics (QCD) phase diagram has a critical point demarcating the order of transition between the two phases: the hadron gas, in which the quarks are confined and the Quark-Gluon Plasma (QGP). The ce ntral goal of the experiments with relativistic heavy-ion collisions is to create and study such form of matter called the QGP and understand the QCD phase diagram. The STAR (Solenoidal Tracker At RHIC) detector is pertinent for the RHIC (Relativistic Heavy Ion Collider) energy scan program where we plan to explore this exciting physics possibility using heavy-ion collisions at various center of mass energies. A first test run with Au+Au collisions at $sqrt{s_{NN}}$ = 9.2 GeV took place in early 2008. We present the recent STAR results from this run of the identified particles (pion, kaon and proton) transverse momentum spectra and ratios. Also we shall present and discuss the results of the azimuthal anisotropy parameters ($v_{1}$, $v_{2}$) along with the pion interferometry measurements. These recent results from Au+Au collisions at $sqrt{s_{NN}}$ = 9.2 GeV are compared with other SPS and RHIC measurements.
133 - Debasish Das 2008
The study of quarkonium production in relativistic heavy ion collisions provides insight into the properties of the produced medium. The lattice studies show a sequential suppression of quarkonia states when compared to normal nuclear matter; which f urther affirms that a full spectroscopy including bottomonium can provide us a better thermometer for the matter produced under extreme conditions in relativistic heavy ion collisions. With the completion of the STAR Electromagnetic Calorimeter and with the increased luminosity provided by RHIC in Run 6 and 7, the study of $Upsilon$ production via the di-electron channel becomes possible. We present the results on $Upsilon$ measurements in p+p collisions (from Run 6) along with the first results from Au+Au collisions (in Run 7) at $sqrt{s_{rm{NN}}} = 200$ GeV from the STAR experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا