ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energ y range, $E in [1,20]$ GeV and zenith angle range, $cos theta in [-1,0]$. We compute the event rates for atmospheric neutrino events in presence of NSI parameters in the energy range $E in [1,10]$ GeV for two different detector configurations - a magnetized iron calorimeter and an unmagnetized liquid Argon time projection chamber which have different sensitivities to NSI parameters due to their complementary characteristics. As an application, we discuss how NSI parameter, $epsilon_{mutau}$ impacts the determination of the correct octant of $theta_{23}$.
The scalar partner of the top quark (the stop) is relatively light in many models of supersymmetry breaking. We study the production of stops at the Large Hadron Collider (LHC) and their subsequent decays through baryon-number violating couplings suc h that the final state contains no leptons. A detailed analysis performed using detector level observables demonstrate that stop masses upto $sim 600 gev$ may be explored at the LHC depending on the branching ratios for such decays and the integrated luminosity available. Extended to other analogous scenarios, the analysis will, generically, probe even larger masses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا