ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose and test a novel conjectural relation satisfied by the superconformal index of maximally supersymmetric $U(N)$ gauge theory in four dimensions. Analogous relations appear to be also valid for the superconformal indices of a large collectio n of other gauge theories, as well as for a broad class of index-like generating functions. The relation expresses the finite $N$ index as a systematic series of corrections to a large $N$ answer. Individual corrections have an holographic interpretation as the analytic continuation of contributions from giant graviton branes fixed by a specific symmetry generator.
We re-examine quantization via branes with the goal of understanding its relation to geometric quantization. If a symplectic manifold $M$ can be quantized in geometric quantization using a polarization ${mathcal P}$, and in brane quantization using a complexification $Y$, then the two quantizations agree if ${mathcal P}$ can be analytically continued to a holomorphic polarization of $Y$. We also show, roughly, that the automorphism group of $M$ that is realized as a group of symmetries in brane quantization of $M$ is the group of symplectomorphisms of $M$ that can be analytically continued to holomorphic symplectomorphisms of $Y$. We describe from the point of view of brane quantization several examples in which geometric quantization with different polarizations gives equivalent results.
We determine the mathematical structures which govern the $Omega$ deformation of supersymmetric intersections of M2 and M5 branes. We find that the supersymmetric intersections govern many aspects of the theory of W-algebras, including degenerate mod ules, the Miura transform and Coulomb gas constructions. We give an algebraic interpretation of the Pandharipande-Thomas box counting in $mathbb{C}^3$.
We describe the relation between integrable Kondo problems in products of chiral $SU(2)$ WZW models and affine $SU(2)$ Gaudin models. We propose a full ODE/IM solution of the spectral problem for these models.
We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspond ence with an infinite set of defect correlation functions. We identify algebras and traces for known boundary conditions. Ward identities expressing the (twisted) periodicity of the trace highly constrain its structure, in many cases allowing for the complete solution. Our main examples in this paper are: the universal enveloping algebra $U(mathfrak{g})$ with the trace describing the Dirichlet boundary conditions; and the finite W-algebra $mathcal{W}(mathfrak{g},t_+)$ with the trace describing the Nahm pole boundary conditions.
We study algebras and correlation functions of local operators at half-BPS interfaces engineered by the stacks of D5 or NS5 branes in the 4d $mathcal{N}=4$ super Yang-Mills. The operator algebra in this sector is isomorphic to a truncation of the Yan gian $mathcal{Y}(mathfrak{gl}_n)$. The correlators, encoded in a trace on the Yangian, are controlled by the inhomogeneous $mathfrak{sl}_n$ spin chain, where $n$ is the number of fivebranes: they are given in terms of matrix elements of transfer matrices associated to Verma modules, or equivalently of products of Baxters Q-operators. This can be viewed as a novel connection between the $mathcal{N}=4$ super Yang-Mills and integrable spin chains. We also remark on analogous constructions involving half-BPS Wilson lines.
We review the properties of orbifold operations on two-dimensional quantum field theories, either bosonic or fermionic, and describe the Orbifold groupoids which control the composition of orbifold operations. Three-dimensional TQFTs of Dijkgraaf-Wit ten type will play an important role in the analysis. We briefly discuss the extension to generalized symmetries and applications to constrain RG flows.
We define and compute algebraically a perturbative part of protected sphere correlation functions in the M2 brane SCFTs. These correlation functions are expected to have a holographic description in terms of twisted, $Omega$-deformed M-theory. We unc over a hidden perturbative triality symmetry which supports this conjecture. We also discuss some variants of the setup, involving M2 branes at $A_k$ singularities and D3 branes with a transverse compact direction.
The theory of Topological Modular Forms suggests the existence of deformation invariants for two-dimensional supersymmetric field theories that are more refined than the standard elliptic genus. In this note we give a physical definition of some of t hese invariants. The theory of mock modular forms makes a surprise appearance, shedding light on the integrality properties of some well-known examples.
We propose matching pairs of half-BPS boundary conditions related by IR dualities of 3d $mathcal{N}=2$ gauge theories. From these matching pairs we construct duality interfaces. We test our proposals by anomaly matching and the computation of supersy mmetric indices. Examples include basic abelian dualities, level-rank dualities, and Aharony dualities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا