ترغب بنشر مسار تعليمي؟ اضغط هنا

We explored the statistical and compositional link between Chelyabinsk meteoroid and potentially hazardous asteroid (86039) 1999 NC43 to investigate their proposed relation proposed by Boroviv{c}ka et al. (2013). Using detailed computation we confirm that the orbit of the Chelyabinsk impactor is anomalously close to 1999 NC43. We find about (1-3) x 10-4 likelihood of that to happen by chance. Taking the standpoint that the Chelyabinsk impactor indeed separated from 1999 NC43 by a cratering or rotational fission event, we run a forward probability calculation, which is an independent statistical test. However, we find this scenario is unlikely at the about (10-3 -10-2) level. We also verified compositional link between Chelyabinska and 1999NC43. Mineralogical analysis of Chelyabinsk (LL chondrite) and (8) Flora (the largest member of the presumed LL chondrite parent family) shows that their olivine and pyroxene chemistries are similar to LL chondrites. Similar analysis of 1999 NC43 shows that its olivine and pyroxene chemistries are more similar to L chondrites than LL chondrites (like Chelyabinsk). We also took photometric observations of 1999 NC43 over 54 nights during two apparitions (2000, 2014). The lightcurve of 1999 NC43 resembles simulated lightcurves of tumblers in Short-Axis Mode with the mean wobbling angle 20-30 deg. While, a mechanism of the non-principal axis rotation excitation is unclear, we can rule out the formation of asteroid in disruption of its parent body as a plausible cause, as it is unlikely that the rotation of an asteroid fragment from catastrophic disruption would be nearly completely halted. Considering all these facts, we find the proposed link between the Chelyabinsk meteoroid and the asteroid 1999 NC43 to be unlikely.
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally d estroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (>10^5 yr at 1 AU) than postulated in the standard collisional models (10^4 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5)x10^11 km^2 and 4x10^19 g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be 10^4-10^5 kg/s. The input is up to 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا