ترغب بنشر مسار تعليمي؟ اضغط هنا

We argue that most strong intervening metal absorption line systems, where the rest equivalent width of the MgII 2796A line is >0.5A, are interstellar material in, and outflowing from, star-forming disks. We show that a version of the Kennicutt-Schmi dt law is readily obtained if the MgII equivalent widths are interpreted as kinematic broadening from absorbing gas in outflowing winds originating from star-forming galaxies. Taking a phenomenological approach and using a set of observational constraints available for star-forming galaxies, we are able to account for the density distribution of strong MgII absorbers over cosmic time. The association of intervening material with star-forming disks naturally explains the metallicity and dust content of strong MgII systems as well as their high HI column densities, and does not require the advection of metals from compact star-forming regions into the galaxy halos to account for the observations. We find that galaxies with a broad range of luminosities can give rise to absorption of a given rest-equivalent width, and discuss possible observational strategies to better quantify true galaxy-absorber associations and further test our model. We show that the redshift evolution in the density of absorbers closely tracks the star formation history of the universe and that strong intervening systems can be used to directly probe the physics of both bright and faint galaxies over a broad redshift range. By identifying strong intervening systems with galaxy disks and quantifying a version of the Kennicutt-Schmidt law that applies to them, a new probe of the interstellar medium is found which provides complementary information to that obtained through emission studies of galaxies. Implications of our results for galaxy feedback and enrichment of the intergalactic medium are discussed. [abridged]
68 - Brenda L. Frye 2008
We present a high signal-to-noise spectrum of a bright galaxy at z = 4.9 in 14 h of integration on VLT FORS2. This galaxy is extremely bright, i_850 = 23.10 +/- 0.01, and is strongly-lensed by the foreground massive galaxy cluster Abell 1689 (z=0.18) . Stellar continuum is seen longward of the Ly-alpha emission line at ~7100 AA, while intergalactic H I produces strong absorption shortward of Ly-alpha. Two transmission spikes at ~6800 Angstroms (A) and ~7040 A are also visible, along with other structures at shorter wavelengths. Although fainter than a QSO, the absence of a strong central ultraviolet flux source in this star forming galaxy enables a measurement of the H I flux transmission in the intergalactic medium (IGM) in the vicinity of a high redshift object. We find that the effective H I optical depth of the IGM is remarkably high within a large 14 Mpc (physical) region surrounding the galaxy compared to that seen towards QSOs at similar redshifts. Evidently, this high-redshift galaxy is located in a region of space where the amount of H I is much larger than that seen at similar epochs in the diffuse IGM. We argue that observations of high-redshift galaxies like this one provide unique insights on the nascent stages of baryonic large-scale structures that evolve into the filamentary cosmic web of galaxies and clusters of galaxies observed in the present universe.
99 - Todd M. Tripp 2008
Using high-resolution UV spectra of 16 low-z QSOs, we study the physical conditions and statistics of O VI absorption in the IGM at z < 0.5. We identify 51 intervening (z_{abs} << z_{QSO}) O VI systems comprised of 77 individual components, and we fi nd 14 proximate systems (z_{abs} ~ z_{QSO}) containing 34 components. For intervening systems [components] with rest-frame equivalent width W_{r} > 30 mA, the number of O VI absorbers per unit redshift dN/dz = 15.6(+2.9/-2.4) [21.0(+3.2/-2.8)], and this decreases to dN/dz = 0.9(+1.0/-0.5) [0.3(+0.7/-0.3)] for W_{r} > 300 mA. The number per redshift increases steeply as z_{abs} approaches z_{QSO}, and some proximate absorbers have substantially lower H I/O VI ratios. The lower proximate ratios could be partially due to ionization effects but also require higher metallicities. We find that 37% of the intervening O VI absorbers have velocity centroids that are well-aligned with corresponding H I absorption. If the O VI and the H I trace the same gas, the relatively small differences in line widths imply the absorbers are cool with T < 10^{5} K. Most of these well-aligned absorbers have the characteristics of metal-enriched photoionized gas. However, the O VI in the apparently simple and cold systems could be associated with a hot phase with T ~ 10^{5.5} K if the metallicity is high enough to cause the associated broad Ly alpha absorption to be too weak to detect. We show that 53% of the intervening O VI systems are complex multiphase absorbers that can accommodate both lower metallicity collisionally-ionized gas with T > 10^{5} K and cold photoionzed gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا