ترغب بنشر مسار تعليمي؟ اضغط هنا

We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 1 0^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.
Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emissio n, but within a large, phonon-broadened spectrum (~100nm), which strongly limits its applicability for quantum communication. By contrast, Ni-related centers exhibit narrow emission lines at room temperature. We present investigations on single color centers consisting of Ni and Si created by ion implantation into single crystalline IIa diamond. We use systematic variations of ion doses between 10^8/cm^2 and 10^14/cm^2 and energies between 30keV and 1.8MeV. The Ni-related centers show emission in the near infrared spectral range (~770nm to 787nm) with a small line-width (~3nm FWHM). A measurement of the intensity correlation function proves single-photon emission. Saturation measurements yield a rather high saturation count rate of 77.9 kcounts/s. Polarization dependent measurements indicate the presence of two orthogonal dipoles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا