ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass-action kinetics is frequently used in systems biology to model the behaviour of interacting chemical species. Many important dynamical properties are known to hold for such systems if they are weakly reversible and have a low deficiency. In part icular, the Deficiency Zero and Deficiency One Theorems guarantee strong regularity with regards to the number and stability of positive equilibrium states. It is also known that chemical reaction networks with disparate reaction structure can exhibit the same qualitative dynamics. The theory of linear conjugacy encapsulates the cases where this relationship is captured by a linear transformation. In this paper, we propose a mixed-integer linear programming algorithm capable of determining weakly reversible reaction networks with a minimal deficiency which are linearly conjugate to a given reaction network.
In the first part of this paper, we propose new optimization-based methods for the computation of preferred (dense, sparse, reversible, detailed and complex balanced) linearly conjugate reaction network structures with mass action dynamics. The devel oped methods are extensions of previously published results on dynamically equivalent reaction networks and are based on mixed-integer linear programming. As related theoretical contributions we show that (i) dense linearly conjugate networks define a unique super-structure for any positive diagonal state transformation if the set of chemical complexes is given, and (ii) the existence of linearly conjugate detailed balanced and complex balanced networks do not depend on the selection of equilibrium points. In the second part of the paper it is shown that determining dynamically equivalent realizations to a network that is structurally fixed but parametrically not can also be written and solved as a mixed-integer linear programming problem. Several examples illustrate the presented computation methods.
A numerically effective procedure for determining weakly reversible chemical reaction networks that are linearly conjugate to a known reaction network is proposed in this paper. The method is based on translating the structural and algebraic characte ristics of weak reversibility to logical statements and solving the obtained set of linear (in)equalities in the framework of mixed integer linear programming. The unknowns in the problem are the reaction rate coefficients and the parameters of the linear conjugacy transformation. The efficacy of the approach is shown through numerical examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا