ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - David S. Tourigny 2013
Energy landscape theory describes how a full-length protein can attain its native fold after sampling only a tiny fraction of all possible structures. Although protein folding is now understood to be concomitant with synthesis on the ribosome there h ave been few attempts to modify energy landscape theory by accounting for cotranslational folding. This paper introduces a model for cotranslational folding that leads to a natural definition of a nested energy landscape. By applying concepts drawn from submanifold differential geometry the dynamics of protein folding on the ribosome can be explored in a quantitative manner and conditions on the nested potential energy landscapes for a good cotranslational folder are obtained. A generalisation of diffusion rate theory using van Kampens technique of composite stochastic processes is then used to account for entropic contributions and the effects of variable translation rates on cotranslational folding. This stochastic approach agrees well with experimental results and Hamiltionian formalism in the deterministic limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا