ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total EMs range between 3 - 8$times10^{54}$ cm$^{-3}$ and are comparable to active coronal sources. Limits on the forbidden to inter-combination line ratios in the He-Like K-shell lines show that we observe a predominantely optically thin plasma with electron densities below $10^{12}$ cm$^{-3}$. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6 to 2.3 Msun classical T Tauri stars shows that coronal activity and possibly coronal loop size increase significantly between ages 0.1 to 10 Myrs.
Chandra HETG spectra of the coronally active binary stars sigma Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in x-rays with this instrument. We compare their properties to solar flare s pectra obtained with the Russian CORONAS-F RESIK instrument at similar resolution in an overlapping bandpass. We emphasize the comparisons of the 3.3-6.1 A region from solar flare spectra to the corresponding sigma Gem and HR 1099 spectra. We also model the the HETG spectra from 1.7-25 A to determine coronal temperatures and elemental abundances. Sigma Gem is a single lined coronally active long period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double lined system. In the deep exposures we study emission from some of the weaker species, such as K, Na, and Al, which have the lowest first ionization potentials (FIP). The solar flare temperatures reach ~20 MK, comparable to the sigma Gem and HR 1099 coronae. During the Chandra exposures, sigma Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2-60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also in a flare state but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest FIP values. The low FIP elements do not show enhancement in the stellar coronae as they do in the Sun, except for K in sigma Gem. Sigma Gem and HR 1099 differ in their emission measure distributions but have very similar elemental abundances.
The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting respo nse corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to the catalogs interface. The catalog is supported by a back-end designed to automatically fetch newly public data, process, archive and catalog them, At the same time utilizing an advanced queue system integrated into the archives MySQL database allowing large processing projects to take advantage of an unlimited number of CPUs across a network for rapid completion. A unique feature of the catalog is that all of the high level functions used to retrieve inputs from the Chandra archive and to generate the final data products are available to the user in an ISIS written library with detailed documentation. Here we present a structural overview of the Systems, Design, and Accessibility features of the catalog and archive.
We present high-resolution X-ray spectra of the multiple T Tauri star system Hen 3-600, obtained with the High Energy Transmission Grating Spectrograph on the Chandra X-ray Observatory. Two binary components were detected in the zeroth-order image. H en 3-600-A, which has a large mid-infrared excess, is a 2-3 times fainter in X-rays than Hen 3-600-B, due to a large flare on B. The dispersed X-ray spectra of the two primary components overlap spatially; spectral analysis was performed on the combined system. Analysis of the individual spectra was limited to regions where the contributions of A and B can be disentangled. This analysis results in two lines of evidence indicating that the X-ray emission from Hen 3-600 is derived from accretion processes: line ratios of O VII indicate that the characteristic density of its X-ray-emitting plasma is large; a significant component of low-temperature plasma is present and is stronger in component A. These results are consistent with results obtained from X-ray gratings spectroscopy of more rapidly accreting systems. All of the signatures of Hen 3-600 that are potential diagnostics of accretion activity -- X-ray emission, UV excess, H-alpha emission, and weak infrared excess -- suggest that its components represent a transition phase between rapidly accreting, classical T Tauri stars and non-accreting, weak-lined T Tauri stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا