ترغب بنشر مسار تعليمي؟ اضغط هنا

132 - David M. Webber 2012
The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared difference s. The solar mixing angle, {theta}_12, and the atmospheric mixing angle, {theta}_23, have been well measured, but until recently the neutrino mixing angle {theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assuming no neutrino oscillation is 0.944 +/- 0.007(stat) +/- 0.003(syst). A fit for {theta}_13 in the three-neutrino framework yields sin^2 2{theta}_13 = 0.089 +/- 0.010(stat) +/- 0.005(syst).
194 - David M. Webber 2011
The Fermi Constant, G_F, describes the strength of the weak force and is determined most precisely from the mean life of the positive muon, tau_mu. Advances in theory have reduced the theoretical uncertainty on G_F as calculated from tau_mu to a few tenths of a part per million (ppm). Until recently, the remaining uncertainty on G_F was entirely experimental and dominated by the uncertainty on tau_mu. We report the MuLan collaborations recent 1.0 ppm measurement of the positive muon lifetime. This measurement is over a factor of 15 more precise than any previous measurement, and is the most precise particle lifetime ever measured. The experiment used a time-structured low-energy muon beam and an array of plastic scintillators read-out by waveform digitizers and a fast data acquisition system to record over 2 times 10^{12} muon decays. Two different in-vacuum muon-stopping targets were used in separate data-taking periods. The results from these two data-taking periods are in excellent agreement. The combined results give tau_{mu^+}({MuLan})=2196980.3(2.2) ps. This measurement of the muon lifetime gives the most precise value for the Fermi Constant: G_F({MuLan}) = 1.1663788 (7) times 10^{-5} {GeV}^{-2} (0.6 ppm). The lifetime is also used to extract the mu^-p singlet capture rate, which determines the protons weak induced pseudoscalar coupling g_P.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا