ترغب بنشر مسار تعليمي؟ اضغط هنا

In X-ray binaries, rapid variability in X-ray flux of greater than an order of magnitude on time-scales of a day or less appears to be a signature of wind accretion from a supergiant companion. When the variability takes the form of rare, brief, brig ht outbursts with only faint emission between them, the systems are called Supergiant Fast X-ray Transients (SFXTs). We present data from twice-weekly scans of the Galactic bulge by the Rossi X-ray Timing Explorer (RXTE) that allow us to compare the behaviour of known SFXTs and possible SFXT candidates with the persistently bright supergiant X-ray binary 4U 1700-377. We independently confirm the orbital periods reported by other groups for SFXTs SAX J1818.6-1703 and IGR J17544-2619. The new data do not independently reproduce the orbital period reported for XTE J1739-302, but slightly improve the significance of the original result when the data are combined. The bulge source XTE J1743-363 shows a combination of fast variability and a long-term decline in activity, the latter behaviour not being characteristic of supergiant X-ray binaries. A far-red spectrum of the companion suggests that it is a symbiotic neutron star binary rather than a high-mass binary, and the reddest known of this class: the spectral type is approximately M8 III.
117 - David M. Smith 2010
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detec tors in space are either scintillators or solid-state detectors. The choice of detector technology depends on the energy range of interest, expected levels of signal and background, required energy and spatial resolution, particle environment on orbit, and other factors. This section covers the materials and configurations commonly used from 10 keV to > 1 GeV.
We present the first direct evidence for dense clumps of matter in the companion wind in a Supergiant Fast X-ray Transient (SFXT) binary. This is seen as a brief period of enhanced absorption during one of the bright, fast flares that distinguish the se systems. The object under study was IGR J17544-2619, and a total of 236 ks of data were accumulated with the Japanese satellite Suzaku. The activity in this period spans a dynamic range of almost 10000 in luminosity and gives a detailed look at SFXT behavior.
We report the discovery of hysteresis between the x-ray spectrum and luminosity of black-hole binary LMC X-3. Our observations, with the Proportional Counter Array on the Rossi X-ray Timing Explorer, took place entirely within the soft spectral state , dominated by a spectral component that was fitted well with a multicolor disk blackbody. A power-law component was seen only during times when the luminosity of the disk blackbody was declining. The x-ray luminosity at these times was comparable to that seen in transient systems (x-ray novae) when they return to the hard state at the end of an outburst. Our observations may represent partial transitions to the hard state; complete transitions have been seen in this system by Wilms et al. (2001). If they are related to the soft-to-hard transition in transients, then they demonstrate that hysteresis effects can appear without a full state transition. We discuss these observations in the context of earlier observations of hysteresis within the hard state of binaries 1E 1740.7-2942 and GRS 1758-258 and in relation to published explanations of hysteresis in transients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا