ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization measurements of the microquasar Cygnus X-1 exist at gamma-ray, X-ray, UV, optical and radio frequencies. The gamma-ray emission has been shown to be highly linearly polarized. Here, we present new infrared polarimetric data of Cygnus X-1 taken with the 10.4-m Gran Telescopio Canarias and the 4.2-m William Herschel Telescope. We show that the broadband, radio to gamma-ray flux spectrum and polarization spectrum in the hard state are largely consistent with a simple phenomenological model of a strongly polarized synchrotron jet, an unpolarized Comptonized corona and a moderately polarized interstellar dust component. In this model, the origin of the gamma-ray, X-ray and some of the infrared polarization is the optically thin synchrotron power law from the inner regions of the jet. The model requires the magnetic field in this region to be highly ordered and perpendicular to the axis of the resolved radio jet. This differs to studies of some other X-ray binaries, in which the magnetic field is turbulent, variable and aligned with the jet axis. The model is able to explain the approximate polarization strength and position angle at all wavelengths including the detected X-ray (3 - 5 keV) polarization, except the observed position angle of the gamma-ray polarization, which differs to the model by ~ 60 degrees. Past numerical modelling has shown that a curved synchrotron spectrum can produce a shift in position angle by ~ 60 degrees, which may account for this.
New optical narrowband imaging observations of the fields of several ULXs are presented. Known supershell nebulae are associated with a number of these ULXs, which we detect in emission line filters such as [S II], He II, [O II] and [O III]. New nebu lae are discovered, which are candidate ULX-powered supershells. The morphologies and emission line fluxes of these nebulae could then be used to infer the properties of the emitting gas, which gives clues to the energizing source (photoionization and/or shock-excitation, both possibly from the ULX). Studies of supershells powered by ULXs can help to constrain the nature of ULXs themselves, such as the isotropy of the X-ray emission and the strength of their outflows.
Synchrotron emission from jets produced by X-ray binaries can be detected at optical and infrared (IR) frequencies. I show that optical/IR colour-magnitude diagrams of the outbursts of nine X-ray binaries successfully separate thermal disc emission f rom non-thermal jet emission, in both black hole and neutron star sources. A heated single-temperature blackbody is able to reproduce the observed relations between colour and magnitude, except when excursions are made to a redder colour than expected, which is due to jet emission. The general picture that is developed is then incorporated into the unified picture of disc-jet behaviour in black hole X-ray binaries. At a given position of a source in the X-ray hardness-intensity diagram, the radio, IR and optical properties can be inferred. Similarly, it is possible to predict the X-ray and radio luminosities and spectral states from optical/IR monitoring.
Transient radio emission from X-ray binaries is associated with synchrotron emission from collimated jets that escape the system, and accreting millisecond X-ray pulsars (AMXPs) are no exception. Although jets from black hole X-ray binaries are well- studied, those from neutron star systems appear much fainter, for reasons yet uncertain. Jets are usually undetectable at higher frequencies because of the relative brightness of other components such as the accretion disc. AMXPs generally have small orbital separations compared with other X-ray binaries and as such their discs are relatively faint. Here, I present data that imply jets in fact dominate the radio-to-optical spectrum of outbursting AMXPs. They therefore may provide the best opportunity to study the behaviour of jets produced by accreting neutron stars, and compare them to those produced by black hole systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا