ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. F ew of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
With their smaller radii and high cosmic abundance, transiting planets around cool stars hold a unique appeal. As part of our on-going project to measure the occurrence rate of extrasolar moons, we here present results from a survey focussing on eigh t Kepler planetary candidates associated with M-dwarfs. Using photodynamical modeling and Bayesian multimodal nested sampling, we find no compelling evidence for an exomoon in these eight systems. Upper limits on the presence of such bodies probe down to $sim0.4M_{oplus}$ in the best case. For KOI-314, we are able to confirm the planetary nature of two out of the three known transiting candidates using transit timing variations. Of particular interest is KOI-314c, which is found to have a mass of $1.0_{-0.3}^{+0.4}M_{oplus}$, making it the lowest mass transiting planet discovered to date. With a radius of $1.61_{-0.15}^{+0.16}R_{oplus}$, this Earth-mass world is likely enveloped by a significant gaseous envelope comprising $geq17_{-13}^{+12}$% of the planet by radius. We find evidence to support the planetary nature of KOI-784 too via transit timing, but we advocate further observations to verify the signals. In both systems, we infer that the inner planet has a higher density than the outer world, which may be indicative of photo-evaporation. These results highlight both the ability of Kepler to search for sub-Earth mass moons and the exciting ancillary science which often results from such efforts.
Kepler-22b is the first transiting planet to have been detected in the habitable-zone of its host star. At 2.4 Earth radii, Kepler-22b is too large to be considered an Earth-analog, but should the planet host a moon large enough to maintain an atmosp here, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable-zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the Hunt for Exomoons with Kepler (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass >0.5 Earth masses to 95% confidence. By signal injection and blind retrieval, we demonstrate that an Earth-like moon is easily detected for this planet even when the time-correlated noise of the data set is taken into account. We provide updated parameters for the planet Kepler-22b including a revised mass of <53 Earth masses to 95% confidence and an eccentricity of 0.13(-0.13)(+0.36) by exploiting Single-body Asterodensity Profiling (SAP). Finally, we show that Kepler-22b has a >95% probability of being within the empirical habitable-zone but a <5% probability of being within the conservative habitable-zone.
The Kepler Mission is monitoring the brightness of ~150,000 stars searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate plan et discovered using the publicly available data for KOI-872. Planet b transits the host star with a period P_b=33.6d and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P_c=57.0d) of mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8d period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.
Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since this time, the detection of extrasolar planets from Jupiter-sized to most recently Earth-sized worlds has blosso med and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequent habitable worlds but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called The Hunt for Exomoons with Kepler (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modelling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalised over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, eta-moon. After discussing our methodologies for target selection, modelling, fitting and vetting, we provide two example analyses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا