ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi on. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
In this paper, we introduce a sophisticated path loss model into the stochastic geometry analysis incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions to study their performance impact in small cell networks (SCNs). Analy tical results are obtained on the coverage probability and the area spectral efficiency (ASE) assuming both a general path loss model and a special case of path loss model recommended by the 3rd Generation Partnership Project (3GPP) standards. The performance impact of LoS and NLoS transmissions in SCNs in terms of the coverage probability and the ASE is shown to be significant both quantitatively and qualitatively, compared with previous work that does not differentiate LoS and NLoS transmissions. Particularly, our analysis demonstrates that when the density of small cells is larger than a threshold, the network coverage probability will decrease as small cells become denser, which in turn makes the ASE suffer from a slow growth or even a notable decrease. For practical regime of small cell density, the performance results derived from our analysis are distinctively different from previous results, and shed new insights on the design and deployment of future dense/ultra-dense SCNs.
In this paper, we introduce a sophisticated path loss model incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions to study their impact on the performance of dense small cell networks (SCNs). Analytical results are obtaine d for the coverage probability and the area spectral efficiency (ASE), assuming both a general path loss model and a special case with a linear LoS probability function. The performance impact of LoS and NLoS transmissions in dense SCNs in terms of the coverage probability and the ASE is significant, both quantitatively and qualitatively, compared with the previous work that does not differentiate LoS and NLoS transmissions. Our analysis demonstrates that the network coverage probability first increases with the increase of the base station (BS) density, and then decreases as the SCN becomes denser. This decrease further makes the ASE suffer from a slow growth or even a decrease with network densification. The ASE will grow almost linearly as the BS density goes ultra dense. For practical regime of the BS density, the performance results derived from our analysis are distinctively different from previous results, and thus shed new insights on the design and deployment of future dense SCNs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا