ترغب بنشر مسار تعليمي؟ اضغط هنا

We present spatially resolved photometric and spectroscopic observations of two wide brown dwarf binaries uncovered by the SIMP near-infrared proper motion survey. The first pair (SIMP J1619275+031350AB) has a separation of 0.691 (15.2 AU) and compon ents T2.5+T4.0, at the cooler end of the ill-understood J-band brightening. The system is unusual in that the earlier-type primary is bluer in J-Ks than the later-type secondary, whereas the reverse is expected for binaries in the late-L to T dwarf range. This remarkable color reversal can possibly be explained by very different cloud properties between the two components. The second pair (SIMP J1501530-013506AB) consists of an L4.5+L5.5 (separation 0.96, 30-47 AU) with a surprisingly large flux ratio (Delta J =1.79 mag) considering the similar spectral types of its components. The large flux ratio could be explained if the primary is itself an equal-luminosity binary, which would make it one of the first known triple brown dwarf systems. Adaptive optics observations could not confirm this hypothesis, but it remains a likely one, which may be verified by high-resolution near-infrared spectroscopy. These two systems add to the handful of known brown dwarf binaries amenable to resolved spectroscopy without the aid of adaptive optics and constitute prime targets to test brown dwarf atmosphere models.
We report the discovery of a wide (135+/-25 AU), unusually blue L5 companion 2MASS J17114559+4028578 to the nearby M4.5 dwarf G 203-50 as a result of a targeted search for common proper motion pairs in the Sloan Digital Sky Survey and the Two Micron All Sky Survey. Adaptive Optics imaging with Subaru indicates that neither component is a nearly equal mass binary with separation > 0.18, and places limits on the existence of additional faint companions. An examination of TiO and CaH features in the primarys spectrum is consistent with solar metallicity and provides no evidence that G 203-50 is metal poor. We estimate an age for the primary of 1-5 Gyr based on activity. Assuming coevality of the companion, its age, gravity and metallicity can be constrained from properties of the primary, making it a suitable benchmark object for the calibration of evolutionary models and for determining the atmospheric properties of peculiar blue L dwarfs. The low total mass (M_tot=0.21+/-0.03 M_sun), intermediate mass ratio (q=0.45+/-0.14), and wide separation of this system demonstrate that the star formation process is capable of forming wide, weakly bound binary systems with low mass and BD components. Based on the sensitivity of our search we find that no more than 2.2% of early-to-mid M dwarfs (9.0 < M_V < 13.0) have wide substellar companions with m > 0.06 M_sun.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا