ترغب بنشر مسار تعليمي؟ اضغط هنا

As various quantum computing technologies continue to compete for quantum supremacy, several parameters have emerged as benchmarks for the quality of qubits. These include fidelity, coherence times, connectivity, and a few others. In this paper, we a im to study the importance of these parameters and their impact on quantum algorithms. We propose a realistic connectivity geometry and form quantum circuits for the Bernstein-Vazirani, QFT, and Grover Algorithms based on the limitations of the chosen geometry. We then simulate these algorithms using error models to study the impact of gate fidelity and coherence times on success of the algorithms. We report on the findings of our simulations and note the various benchmarking values which produce reliably successful results.
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater. The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use extreme adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.
The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrar ed on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.
83 - David King , Chris Kimble 2008
Although the gulf between the theory and practice in Information Systems is much lamented, few researchers have offered a way forward except through a number of (failed) attempts to develop a single systematic theory for Information Systems. In this paper, we encourage researchers to re-examine the practical consequences of their theoretical arguments. By examining these arguments we may be able to form a number of more rigorous theories of Information Systems, allowing us to draw theory and practice together without undertaking yet another attempt at the holy grail of a single unified systematic theory of Information Systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا