ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - David J. Bacon 2014
Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect d ominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialised over-densities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3-D potential maps of large volumes of the Universe using Doppler lensing.
Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line-of-sight. We find that the correlation between th is measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7sigma. Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4sigma. We show for the first time that distance estimates from supernovae can be improved when lensing is incorporated by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using CMB data from WMAP7, H0 data from HST and SDSS BAO measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Omega_m and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics dominated.
100 - Alvise Raccanelli 2011
We present forecasts for constraints on cosmological models which can be obtained by forthcoming radio continuum surveys: the wide surveys with the LOw Frequency ARray (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP) and the Westerbork O bservations of the Deep APERTIF Northern sky (WODAN). We use simulated catalogues appropriate to the planned surveys to predict measurements obtained with the source auto-correlation, the cross-correlation between radio sources and CMB maps (the Integrated Sachs-Wolfe effect), the cross-correlation of radio sources with foreground objects due to cosmic magnification, and a joint analysis together with the CMB power spectrum and supernovae. We show that near future radio surveys will bring complementary measurements to other experiments, probing different cosmological volumes, and having different systematics. Our results show that the unprecedented sky coverage of these surveys combined should provide the most significant measurement yet of the Integrated Sachs-Wolfe effect. In addition, we show that using the ISW effect will significantly tighten constraints on modified gravity parameters, while the best measurements of dark energy models will come from galaxy auto-correlation function analyses. Using the combination of EMU and WODAN to provide a full sky survey, it will be possible to measure the dark energy parameters with an uncertainty of {$sigma (w_0) = 0.05$, $sigma (w_a) = 0.12$} and the modified gravity parameters {$sigma (eta_0) = 0.10$, $sigma (mu_0) = 0.05$}, assuming Planck CMB+SN(current data) priors. Finally, we show that radio surveys would detect a primordial non-Gaussianity of $f_{rm NL}$ = 8 at 1-$sigma$ and we briefly discuss other promising probes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا