ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we present a detailed study of Skyrmion-Skyrmion scattering for two $B=1$ Skyrmions in the attractive channel where we observe two different scattering regimes. For large separation, the scattering can be approximated as interacting di poles. We give a qualitative estimate when this approximation breaks down. For small separations we observe an additional short-range repulsion which is qualitatively similar to monopole scattering. We also observe the interesting effect of rotation without rotating whereby two Skyrmions, whose orientations remain constant while well-separated, change their orientation after scattering. We can explain this effect by following preimages through the scattering process, thereby measuring which part of an in-coming Skyrmion forms part of an out-going Skyrmion. This leads to a new way of visualising Skyrmions. Furthermore, we consider spinning Skyrmions and find interesting trajectories.
The Skyrme model is a non-linear field theory whose solitonic solutions, once quantised, describe atomic nuclei. The classical static soliton solutions, so-called Skyrmions, have interesting discrete symmetries and can only be calculated numerically. Mathematically, these Skyrmions can be viewed as maps between to two three-manifolds and, as such, their stable singularities can only be folds, cusps and swallowtails. Physically, the occurrence of singularities is related to negative baryon density. In this paper, we calculate the charge three Skyrmion to a high resolution in order to examine its singularity structure in detail. Thereby, we explore regions of negative baryon density. We also discuss how the negative baryon density depends on the pion mass.
Solitons in the Skyrme-Faddeev model on R^2xS^1 are shown to undergo buckling transitions as the circumference of the S^1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا