ترغب بنشر مسار تعليمي؟ اضغط هنا

Some of the most arduous and error-prone aspects of precision resummed calculations are related to the partonic hard process, having nothing to do with the resummation. In particular, interfacing to parton-distribution functions, combining various ch annels, and performing the phase space integration can be limiting factors in completing calculations. Conveniently, however, most of these tasks are already automated in many Monte Carlo programs, such as MadGraph, Alpgen or Sherpa. In this paper, we show how such programs can be used to produce distributions of partonic kinematics with associated color structures representing the hard factor in a resummed distribution. These distributions can then be used to weight convolutions of jet, soft and beam functions producing a complete resummed calculation. In fact, only around 1000 unweighted events are necessary to produce precise distributions. A number of examples and checks are provided, including $e^+e^-$ two- and four-jet event shapes, $n$-jettiness and jet-mass related observables at hadron colliders. Attached code can be used to modify MadGraph to export the relevant leading-order hard functions and color structures for arbitrary processes.
A number of methods have been proposed recently which exploit multiple highly-correlated interpretations of events, or of jets within an event. For example, Qjets reclusters a jet multiple times and telescoping jets uses multiple cone sizes. Previous work has employed these methods in pseudo-experimental analyses and found that, with a simplified statistical treatment, they give sizable improvements over traditional methods. In this paper, the improvement gain from multiple event interpretations is explored with methods much closer to those used in real experiments. To this end, we derive a generalized extended maximum likelihood procedure. We study the significance improvement in Higgs to bb with both this method and the simplified method from previous analysis. With either method, we find that using multiple jet radii can provide substantial benefit over a single radius. Another concern we address is that multiple event interpretations might be exploiting similar information to that already present in the standard kinematic variables. By examining correlations between kinematic variables commonly used in LHC analyses and invariant masses obtained with multiple jet reconstructions, we find that using multiple radii is still helpful even on top of standard kinematic variables when combined with boosted decision trees. These results suggest that including multiple event interpretations in a realistic search for Higgs to bb would give additional sensitivity over traditional approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا