ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a 324.5MHz image of the NOAO Bootes field that was made using Very Large Array (VLA) P-band observations. The image has a resolution of 5.6x5.1arcsec, a radius of $2.05^circ$ and a central noise of ~0.2mJybeam. Both the resolution and nois e of the image are an order of magnitude better than what was previously available at this frequency and will serve as a valuable addition to the already extensive multiwavelength data that are available for this field. The final source catalogue contains 1370 sources and has a median 325 to 1400MHz spectral index of -0.72. Using a radio colour-colour diagram of the unresolved sources in our catalogue, we identify 33 megahertz peaked-spectrum (MPS) sources. Based on the turnover frequency linear size relation for the gigahertz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources, we expect that the MPS sources that are compact on scales of tens of milliarcseconds should be young radio loud active galactic nuclei at high (z>2) redshifts. Of the 33 MPS sources, we were able to determine redshifts for 24, with an average redshift of 1.3. Given that five of the sources are at z>2, that the four faint sources for which we could not find redshifts are likely at even higher redshifts and that we could only select sources that are compact on a scale of ~5arcsec, there is encouraging evidence that the MPS method can be used to search for high-redshift sources.
Many upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of ultra-luminous X-ray (ULX) sources, which are thought to be accreting black holes for the most part. We also discuss the sub-class of ULXs known as the hyper-luminous X-ray sources, which may be accreting intermediate mass black holes. We focus on some of the open questions that will be addressed with the new facilities, such as the mass of the black hole in ULXs, their temporal variability and the nature of the state changes, their surrounding nebulae and the nature of the region in which ULXs reside.
Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar mass black holes ($sim$3$-$20 solar masses, M$_odot$) as well as supermassive black holes ($sim$10$^6$$-$10$^9$ M$_odo t$) found in the centres of most galaxies. Jets should also be produced by intermediate mass black holes ($sim$10$^2$$-$10$^5$ M$_odot$), although evidence for this third class of black hole has until recently been weak. We report the detection of transient radio emission at the location of the intermediate mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between $sim$9 $times$10$^{3}$ M$_odot$ and $sim$9 $times$10$^{4}$ M$_odot$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا