ترغب بنشر مسار تعليمي؟ اضغط هنا

Piecewise-Linear in Rates (PWLR) Lyapunov functions are introduced for a class of Chemical Reaction Networks (CRNs). In addition to their simple structure, these functions are robust with respect to arbitrary monotone reaction rates, of which mass-ac tion is a special case. The existence of such functions ensures the convergence of trajectories towards equilibria, and guarantee their asymptotic stability with respect to the corresponding stoichiometric compatibility class. We give the definition of these Lyapunov functions, prove their basic properties, and provide algorithms for constructing them. Examples are provided, relationship with consensus dynamics are discussed, and future directions are elaborated.
We describe combinatorial approaches to the question of whether families of real matrices admit pairs of nonreal eigenvalues passing through the imaginary axis. When the matrices arise as Jacobian matrices in the study of dynamical systems, these con ditions provide necessary conditions for Hopf bifurcations to occur in parameterised families of such systems. The techniques depend on the spectral properties of additive compound matrices: in particular, we associate with a product of matrices a signed, labelled digraph termed a DSR^[2] graph, which encodes information about the second additive compound of this product. A condition on the cycle structure of this digraph is shown to rule out the possibility of nonreal eigenvalues with positive real part. The techniques developed are applied to systems of interacting elements termed interaction networks, of which networks of chemical reactions are a special case.
Attractors of cooperative dynamical systems are particularly simple; for example, a nontrivial periodic orbit cannot be an attractor. This paper provides characterizations of attractors for the wider class of coherent systems, defined by the property that no directed feedback loops are negative. Several new results for cooperative systems are obtained in the process.
The present paper is devoted to estimating the speed of convergence towards consensus for a general class of discrete-time multi-agent systems. In the systems considered here, both the topology of the interconnection graph and the weight of the arcs are allowed to vary as a function of time. Under the hypothesis that some spanning tree structure is preserved along time, and that some nonzero minimal weight of the information transfer along this tree is guaranteed, an estimate of the contraction rate is given. The latter is expressed explicitly as the spectral radius of some matrix depending upon the tree depth and the lower bounds on the weights.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا