ترغب بنشر مسار تعليمي؟ اضغط هنا

Golovich et al. 2017b presents an optical imaging and spectroscopic survey of 29 radio relic merging galaxy clusters. In this paper, we study this survey to identify substructure and quantify the dynamics of the mergers. Using a combined photometric and spectroscopic approach, we identify the minimum number of substructures in each system to describe the galaxy populations and estimate the line of sight velocity difference between likely merging subclusters. We find that the line-of-sight velocity components of the mergers are typically small compared with the maximum three dimensional relative velocity (usually $<1000$ km s$^{-1}$ and often consistent with zero). This suggests that the merger axes of these systems are generally in or near the plane of the sky matching findings in magneto-hydrodynamical simulations. In 28 of the 29 systems we identify substructures in the galaxy population aligned with the radio relic(s) and presumed associated merger induced shock. From this ensemble, we identify eight systems to include in a `gold sample that is prime for further observation, modeling, and simulation study. Additional papers will present weak lensing mass maps and dynamical modeling for each merging system, ultimately leading to new insight into a wide range of astrophysical phenomena at some of the largest scales in the universe.
Multi-band photometric and multi-object spectroscopic surveys of merging galaxy clusters allow for the characterization of the distributions of constituent dark matter and galaxy populations, constraints on the dynamics of the merging subclusters, an d an understanding of galaxy evolution of member galaxies. We present deep photometric observations from Subaru/SuprimeCam and a catalog of $sim$5400 spectroscopic cluster members from Keck/DEIMOS across 29 merging galaxy clusters ranging in redshift from $z=0.07$ to $0.55$. The ensemble is compiled based on the presence of radio relics, which highlight cluster scale collisionless shocks in the intra-cluster medium. Together with the spectroscopic and photometric information, the velocities, timescales, and geometries of the respective merging events may be tightly constrained. In this preliminary analysis, the velocity distributions of 28 of the 29 clusters are shown to be well fit by single Gaussians. This indicates that radio relic mergers largely occur transverse to the line of sight and/or near apocenter. In this paper, we present our optical and spectroscopic surveys, preliminary results, and a discussion of the value of radio relic mergers for developing accurate dynamical models of each system.
ZwCl 2341.1+0000, a merging galaxy cluster with disturbed X-ray morphology and widely separated ($sim$3 Mpc) double radio relics, was thought to be an extremely massive ($10-30 times 10^{14} M_odot$) and complex system with little known about its mer ger history. We present JVLA 2-4 GHz observations of the cluster, along with new spectroscopy from our Keck/DEIMOS survey, and apply Gaussian Mixture Modeling to the three-dimensional distribution of 227 confirmed cluster galaxies. After adopting the Bayesian Information Criterion to avoid overfitting, which we discover can bias total dynamical mass estimates high, we find that a three-substructure model with a total dynamical mass estimate of $9.39 pm 0.81 times 10^{14} M_odot$ is favored. We also present deep Subaru imaging and perform the first weak lensing analysis on this system, obtaining a weak lensing mass estimate of $5.57 pm 2.47 times 10^{14} M_odot$. This is a more robust estimate because it does not depend on the dynamical state of the system, which is disturbed due to the merger. Our results indicate that ZwCl 2341.1+0000 is a multiple merger system comprised of at least three substructures, with the main merger that produced the radio relics occurring near to the plane of the sky, and a younger merger in the North occurring closer to the line of sight. Dynamical modeling of the main merger reproduces observed quantities (relic positions and polarizations, subcluster separation and radial velocity difference), if the merger axis angle of $sim$10$^{+34}_{-6}$ degrees and the collision speed at pericenter is $sim$1900$^{+300}_{-200}$ km/s.
Most of the matter in the universe is not luminous and can be observed directly only through its gravitational effect. An emerging technique called weak gravitational lensing uses background galaxies to reveal the foreground dark matter distribution on large scales. Light from very distant galaxies travels to us through many intervening overdensities which gravitationally distort their apparent shapes. The observed ellipticity pattern of these distant galaxies thus encodes information about the large-scale structure of the universe, but attempts to measure this effect have been inconclusive due to systematic errors. We report the first detection of this ``cosmic shear using 145,000 background galaxies to reveal the dark matter distribution on angular scales up to half a degree in three separate lines of sight. The observed angular dependence of this effect is consistent with that predicted by two leading cosmological models, providing new and independent support for these models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا