ترغب بنشر مسار تعليمي؟ اضغط هنا

Global resonance is a mechanism by which a homoclinic tangency of a smooth map can have infinitely many asymptotically stable, single-round periodic solutions. To understand the bifurcation structure one would expect to see near such a tangency, in t his paper we study one-parameter perturbations of typical globally resonant homoclinic tangencies. We assume the tangencies are formed by the stable and unstable manifolds of saddle fixed points of two-dimensional maps. We show the perturbations display two infinite sequences of bifurcations, one saddle-node the other period-doubling, between which single-round periodic solutions are asymptotically stable. Generically these scale like $|lambda|^{2 k}$, as $k to infty$, where $-1 < lambda < 1$ is the stable eigenvalue associated with the fixed point. If the perturbation is taken tangent to the surface of codimension-one homoclinic tangencies, they instead scale like $frac{|lambda|^k}{k}$. We also show slower scaling laws are possible if the perturbation admits further degeneracies.
95 - David J.W. Simpson 2021
The leading-order approximation to a Filippov system $f$ about a generic boundary equilibrium $x^*$ is a system $F$ that is affine one side of the boundary and constant on the other side. We prove $x^*$ is exponentially stable for $f$ if and only if it is exponentially stable for $F$ when the constant component of $F$ is not tangent to the boundary. We then show exponential stability and asymptotic stability are in fact equivalent for $F$. We also show exponential stability is preserved under small perturbations to the pieces of $F$. Such results are well known for homogeneous systems. To prove the results here additional techniques are required because the two components of $F$ have different degrees of homogeneity. The primary function of the results is to reduce the problem of the stability of $x^*$ from the general Filippov system $f$ to the simpler system $F$. Yet in general this problem remains difficult. We provide a four-dimensional example of $F$ for which orbits appear to converge to $x^*$ in a chaotic fashion. By utilising the presence of both homogeneity and sliding motion the dynamics of $F$ can in this case be reduced to the combination of a one-dimensional return map and a scalar function.
77 - David J.W. Simpson 2020
We show how the existence of three objects, $Omega_{rm trap}$, ${bf W}$, and $C$, for a continuous piecewise-linear map $f$ on $mathbb{R}^N$, implies that $f$ has a topological attractor with a positive Lyapunov exponent. First, $Omega_{rm trap} subs et mathbb{R}^N$ is trapping region for $f$. Second, ${bf W}$ is a finite set of words that encodes the forward orbits of all points in $Omega_{rm trap}$. Finally, $C subset T mathbb{R}^N$ is an invariant expanding cone for derivatives of compositions of $f$ formed by the words in ${bf W}$. We develop an algorithm that identifies these objects for two-dimensional homeomorphisms comprised of two affine pieces. The main effort is in the explicit construction of $Omega_{rm trap}$ and $C$. Their existence is equated to a set of computable conditions in a general way. This results in a computer-assisted proof of chaos throughout a relatively large regime of parameter space. We also observe how the failure of $C$ to be expanding can coincide with a bifurcation of $f$. Lyapunov exponents are evaluated using one-sided directional derivatives so that forward orbits that intersect a switching manifold (where $f$ is not differentiable) can be included in the analysis.
88 - David J.W. Simpson 2019
For piecewise-linear maps, the phenomenon that a branch of a one-dimensional unstable manifold of a periodic solution is completely contained in its stable manifold is codimension-two. Unlike codimension-one homoclinic corners, such `subsumed homocli nic connections can be associated with stable periodic solutions. The purpose of this paper is to determine the dynamics near a generic subsumed homoclinic connection in two dimensions. Assuming the eigenvalues associated with the periodic solution satisfy $0 < |lambda| < 1 < sigma < frac{1}{|lambda|}$, in a two-parameter unfolding there exists an infinite sequence of roughly triangular regions within which the map has a stable single-round periodic solution. The result applies to both discontinuous and continuous maps, although these cases admit different characterisations for the border-collision bifurcations that correspond to boundaries of the regions. The result is illustrated with a discontinuous map of Mira and the two-dimensional border-collision normal form.
As the parameters of a map are varied an attractor may vary continuously in the Hausdorff metric. The purpose of this paper is to explore the continuation of chaotic attractors. We argue that this is not a helpful concept for smooth unimodal maps for which periodic windows fill parameter space densely, but that for piecewise-smooth maps it provides a way to delineate structure within parameter regions of robust chaos and form a stronger notion of robustness. We obtain conditions for the continuity of an attractor and demonstrate the results with coupled skew tent maps, the Lozi map, and the border-collision normal form.
Chaotic attractors in the two-dimensional border-collision normal form (a piecewise-linear map) can persist throughout open regions of parameter space. Such robust chaos has been established rigorously in some parameter regimes. Here we provide forma l results for robust chaos in the original parameter regime of [S. Banerjee, J.A. Yorke, C. Grebogi, Robust Chaos, Phys. Rev. Lett. 80(14):3049--3052, 1998]. We first construct a trapping region in phase space to prove the existence of a topological attractor. We then construct an invariant expanding cone in tangent space to prove that tangent vectors expand and so no invariant set can have only negative Lyapunov exponents. Under additional assumptions we also characterise an attractor as the closure of the unstable manifold of a fixed point.
111 - David J.W. Simpson 2019
For many physical systems the transition from a stationary solution to sustained small amplitude oscillations corresponds to a Hopf bifurcation. For systems involving impacts, thresholds, switches, or other abrupt events, however, this transition can be achieved in fundamentally different ways. This paper reviews 20 such `Hopf-like bifurcations for two-dimensional ODE systems with state-dependent switching rules. The bifurcations include boundary equilibrium bifurcations, the collision or change of stability of equilibria or folds on switching manifolds, and limit cycle creation via hysteresis or time delay. In each case a stationary solution changes stability and possibly form, and emits one limit cycle. Each bifurcation is analysed quantitatively in a general setting: we identify quantities that govern the onset, criticality, and genericity of the bifurcation, and determine scaling laws for the period and amplitude of the resulting limit cycle. Complete derivations based on asymptotic expansions of Poincare maps are provided. Many of these are new, done previously only for piecewise-linear systems. The bifurcations are collated and compared so that dynamical observations can be matched to geometric mechanisms responsible for the creation of a limit cycle. The results are illustrated with impact oscillators, relay control, automated balancing control, predator-prey systems, ocean circulation, and the McKean and Wilson-Cowan neuron models.
102 - David J.W. Simpson 2018
This paper concerns two-dimensional Filippov systems --- ordinary differential equations that are discontinuous on one-dimensional switching manifolds. In the situation that a stable focus transitions to an unstable focus by colliding with a switchin g manifold as parameters are varied, a simple sufficient condition for a unique local limit cycle to be created is established. If this condition is violated, three nested limit cycles may be created simultaneously. The result is achieved by constructing a Poincare map and generalising analytical arguments that have been employed for continuous systems. Necessary and sufficient conditions for the existence of pseudo-equilibria (equilibria of sliding motion on the switching manifold) are also determined. For simplicity only piecewise-linear systems are considered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا